PTH secretion from dispersed bovine parathyroid cells maintained in culture becomes progressively less responsive to changes in the extracellular Ca2+ concentration (Ca2+o) over several days. We have now investigated whether this change in secretory control is associated with alterations in the expression of the Ca2+o-sensing receptor (BoPCaR) recently cloned from bovine parathyroid, which plays a central role in Ca2+o-regulated PTH secretion. BoPCaR messenger RNA levels dropped rapidly in cultured bovine parathyroid cells, as assessed by Northern analysis, decreasing by 78% within 18 h and remaining low for at least 4 days. The level of receptor protein decreased to a comparable extent (approximately 72-82%) after 3-4 days in culture, as determined by immunocytochemistry with specific antibodies directed at the extracellular domain of the receptor. The half-time for the reduction in receptor protein (approximately 2 days) was considerably longer, however, than that for BoPCaR messenger RNA, but was comparable to that for the loss of sensitivity of PTH secretion to Ca2+o. Indeed, there was a close linear correlation between maximal suppressibility of PTH secretion and the intensity of staining for the receptor protein (r = 0.88; P = 0.004). We conclude that alterations in the expression of BoPCaR could explain much of the reduced responsiveness of cultured bovine parathyroid cells to Ca2+o.

Download full-text PDF

Source
http://dx.doi.org/10.1210/endo.136.7.7789335DOI Listing

Publication Analysis

Top Keywords

bovine parathyroid
20
parathyroid cells
16
pth secretion
16
cultured bovine
12
receptor protein
12
reduced responsiveness
8
responsiveness cultured
8
extracellular ca2+
8
alterations expression
8
bopcar messenger
8

Similar Publications

Design and development of in-vitro co-culture device for studying cellular crosstalk in varied tissue microenvironment.

Biomater Adv

October 2024

Biomaterial and Biomimetic Laboratory, School of Life Sciences, Central University of Gujarat, India; Terasaki Institute of Biomedical Innovation, Los Angeles, CA, USA. Electronic address:

Despite of being in different microenvironment, breast cancer cells influence the bone cells and persuade cancer metastasis from breast to bone. Multiple co-culture approaches have been explored to study paracrine signaling between these cells and to study the progression of cancer. However, lack of native tissue microenvironment remains a major bottleneck in existing co-culture technologies.

View Article and Find Full Text PDF

A production platform for disulfide-bonded peptides in the periplasm of Escherichia coli.

Microb Cell Fact

June 2024

Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria.

Background: Recombinant peptide production in Escherichia coli provides a sustainable alternative to environmentally harmful and size-limited chemical synthesis. However, in-vivo production of disulfide-bonded peptides at high yields remains challenging, due to degradation by host proteases/peptidases and the necessity of translocation into the periplasmic space for disulfide bond formation.

Results: In this study, we established an expression system for efficient and soluble production of disulfide-bonded peptides in the periplasm of E.

View Article and Find Full Text PDF

Mineral metabolism, in particular Ca, and to a lesser extent phosphorus (P) and magnesium (Mg), is altered with the onset of lactation because of extensive irreversible loss to synthesize colostrum and milk. The transient reduction in the concentration of Ca in blood, particularly when it lasts days, increases the risk of mineral-related disorders such as hypocalcemia and, to a lesser extent, hypophosphatemia. Although the incidence of clinical hypocalcemia can be reduced by prepartum dietary interventions, subclinical hypocalcemia remains prevalent, affecting up to 60% of the dairy cows in the first 3 d postpartum.

View Article and Find Full Text PDF
Article Synopsis
  • Silicon (Si) is believed to support healthy bone formation and reduce bone resorption, potentially benefiting the overall quality of bone in calves.
  • In a study, 24 crossbred calves were divided into four groups and supplemented with different amounts of Si for 90 days, while monitoring factors like growth, immunity, and bone health.
  • Results indicated that Si supplementation led to improved weight gain and growth measurements, but did not significantly affect immune responses or certain blood biochemical markers related to bone health.
View Article and Find Full Text PDF

The periparturient period is characterized by the increased demand for calcium (Ca) in dairy cows. This has resulted in the use of several different prepartal nutritional strategies to prevent hypocalcemia postpartum. The objective of our study was to determine the effects of feeding synthetic zeolite A (XZ), a diet with negative dietary cation-anion difference (-DCAD), or a positive-DCAD diet (CON) during the close-up period on peripartal mineral dynamics and hormones involved in calcium metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!