Site-directed mutagenesis--molecular biology and rational drug design.

Agents Actions Suppl

Roche Research Center, Hoffmann-La Roche Inc., Nutley, New Jersey, USA.

Published: July 1995

Using site-directed mutagenesis, we have determined the location and composition of the binding sites in human IL-1 alpha and IL-1 beta for the Type I IL-1 receptor (IL-1R). The binding site in each ligand is a discontinuous epitope made up of at least seven amino acids whose side chains are exposed on a contiguous region of the protein surface. Although human IL-1 alpha and IL-1 beta have similar affinities and cross-compete for binding to the human Type I IL-1R, the binding site residues are not identical in the two ligands. In addition, the residues in the binding site of each ligand contribute differently to binding of the human versus the mouse IL-1R. The structure of the IL-1 binding site has implications for the rational design of IL-1 antagonists.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-0348-7343-7_14DOI Listing

Publication Analysis

Top Keywords

binding site
16
human il-1
8
il-1 alpha
8
alpha il-1
8
il-1 beta
8
il-1r binding
8
site ligand
8
binding human
8
binding
7
il-1
7

Similar Publications

Abundant repressor binding sites in human enhancers are associated with the fine-tuning of gene regulation.

iScience

January 2025

Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.

The regulation of gene expression relies on the coordinated action of transcription factors (TFs) at enhancers, including both activator and repressor TFs. We employed deep learning (DL) to dissect HepG2 enhancers into positive (PAR), negative (NAR), and neutral activity regions. Sharpr-MPRA and STARR-seq highlight the dichotomy impact of NARs and PARs on modulating and catalyzing the activity of enhancers, respectively.

View Article and Find Full Text PDF

Background: Liver fibrosis is a serious global health issue, but current treatment options are limited due to a lack of approved therapies capable of preventing or reversing established fibrosis.

Aim: This study investigated the antifibrotic effects of a synthetic peptide derived from α-lactalbumin in a mouse model of thioacetamide (TAA)-induced liver fibrosis.

Methods: analyses were conducted to assess the physicochemical properties, pharmacophore features, and docking interactions of the peptide.

View Article and Find Full Text PDF

Reducing off-target expression of mRNA therapeutics and vaccines in the liver with microRNA binding sites.

Mol Ther Methods Clin Dev

March 2025

Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55902, USA.

Lipid nanoparticles (LNPs) are often liver tropic, presenting challenges for LNP-delivered mRNA therapeutics intended for other tissues, as off-target expression in the liver may increase side effects and modulate immune responses. To avoid off-target expression in the liver, miR-122 binding sites have been used by others in viral and non-viral therapeutics. Here, we use a luciferase reporter system to compare different copy numbers and insertion locations of miR-122 binding sequences to restrict liver expression.

View Article and Find Full Text PDF

Sterol transport proteins mediate intracellular sterol transport, organelle contact sites, and lipid metabolism. Despite their importance, the similarities in their sterol-binding domains have made the identification of selective modulators difficult. Herein we report a combination of different compound library synthesis strategies to prepare a cholic acid-inspired compound collection for the identification of potent and selective inhibitors of sterol transport proteins.

View Article and Find Full Text PDF

Strand-Swapped SH3 Domain Dimer with Superoxide Dismutase Activity.

ACS Cent Sci

January 2025

Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.

The design of metalloproteins allows us to better understand metal complexation in proteins and the resulting function. In this study, we incorporated a Cu-binding site into a natural protein domain, the 58 amino acid c-Crk-SH3, to create a miniaturized superoxide dismutase model, termed SO1. The resulting low complexity metalloprotein was characterized for structure and function by circular dichroism and UV spectroscopy as well as EPR spectroscopy and X-ray crystallography.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!