The effects of cerebrospinal fluid (CSF) and serum from patients having Guillain-Barré syndrome (GBS) or chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) on voltage-dependent Na+ channels were compared. Bathing human myoballs in CSF substantially reduced their Na+ currents (by > 40% with 8 of 10 patients) elicited at 1 Hz under whole-cell recording conditions. This was because, at the resting potential, more Na+ channels were inactivated (left-shift of the h infinity curve). CSF from patients with other neurological diseases (OND) produces a similar, but smaller, effect. In contrast, serum samples from the same GBS and OND patients caused an increase of the Na+ currents by reducing the number of Na+ channels inactivated at the resting potential. This right-shift of the h infinity curve is in part explained by the effect of serum albumin. We confirm that the CSF of most GBS and CIDP patients contains factors inhibiting voltage-dependent Na+ currents. There is no indication that such factors are effective in the serum of these patients.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mus.880180715DOI Listing

Publication Analysis

Top Keywords

serum patients
12
na+ channels
12
na+ currents
12
cerebrospinal fluid
8
voltage-dependent na+
8
resting potential
8
channels inactivated
8
infinity curve
8
patients
7
na+
6

Similar Publications

Objective: This study investigates the relationship between the albumin-to-creatinine ratio and diabetic retinopathy (DR) in US adults using NHANES data from 2009 to 2016. This study assesses the predictive efficacy of the urinary serum albumin-to-creatinine ratio (UACR/SACR Ratio) against traditional biomarkers such as the serum albumin-to-creatinine ratio (SACR) and urinary albumin-to-creatinine ratio (UACR) for evaluating DR risk. Additionally, the study explores the potential of these biomarkers, both individually and in combination with HbA1c, for early detection and risk stratification of DR.

View Article and Find Full Text PDF

Background: Oral nutritional supplements (ONS) are commonly prescribed to provide protein and energy to hemodialysis (HD) patients. There is a debate about the appropriate timing to administer ONS. We aimed to study the effect of different timings of ONS on variable outcomes in HD patients.

View Article and Find Full Text PDF

Background: Chemokines and their receptors, which regulate lymphoid organ development and immune cell trafficking, are integral to the mechanisms underlying viral control, hepatic inflammation, and liver damage in chronic hepatitis C (CHC) infection. This study explores the potential relationship between serum chemokine levels/polymorphisms and hepatitis C infection in affected individuals, with a particular focus on their utility as biomarkers across different stages of fibrosis.

Methods And Results: Serum levels of the chemokines CXCL11, CXCL12, and CXCL16 were measured in patients with mild/moderate and advanced fibrosis due to CHC, as well as in healthy controls, using the ELISA method.

View Article and Find Full Text PDF

Metabolomics provide a promising tool for understanding dementia pathogenesis and identifying novel biomarkers. This study aimed to identify amino acid biomarkers for Alzheimer's Disease (AD) and Vascular Dementia (VD). By amino acid metabolomics, the concentrations of amino acids were determined in the serum of AD and VD patients as well as age-matched healthy controls.

View Article and Find Full Text PDF

Background: Celiac disease (CeD) has shown an association with autoimmune disorders including vitiligo and alopecia areata (AA). Ritlecitinib, a JAK3 and TEC kinase family inhibitor, has been approved for treatment of patients with AA and is in late-stage development for vitiligo. Ritlecitinib inhibits cytotoxic T cells, NK cells, and B cells which play a role in the pathogenesis of CeD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!