Epidermal carcinogenesis studies of EDS liquids.

J Appl Toxicol

Exxon Biomedical Sciences, Inc., East Millstone, NJ 08875-2350, USA.

Published: July 1995

A series of liquids representing different potential design options or operating configurations for the EDS direct coal liquefaction process* were evaluated for skin cancer potential. All of the samples that contained substantial amounts of material boiling above 370 degrees C were active dermal carcinogens; tumor yields were near 100% and median times to tumor development generally ranged from 30 to 40 weeks. Two liquids that boiled below ca. 200 degrees C were tested and each produced one squamous cell tumor. These data suggested that high-boiling-point, coal-derived liquids are likely to be relatively potent dermal carcinogens; whereas low-boiling-point liquids do not possess significant carcinogenic potential. Based on a comparison of the carcinogenic potency data, liquids produced by the EDS process apparently do not present a significantly greater dermal carcinogenic hazard than other coal-derived materials of similar boiling range.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jat.2550150205DOI Listing

Publication Analysis

Top Keywords

dermal carcinogens
8
liquids
6
epidermal carcinogenesis
4
carcinogenesis studies
4
studies eds
4
eds liquids
4
liquids series
4
series liquids
4
liquids representing
4
representing potential
4

Similar Publications

The rapid development of the global chemical industry has led to widespread groundwater contamination, with frequent pollution incidents posing severe threats to water safety. However, there has been insufficient assessment of the health risks posed by chlorinated hydrocarbon contamination in groundwater around chemical industrial parks. This study evaluates the chlorinated hydrocarbon contamination in groundwater at a chemical park and conducts a multi-pathway health risk assessment, identifying the key risk pollutants.

View Article and Find Full Text PDF

Green Tea Catechins and Skin Health.

Antioxidants (Basel)

December 2024

Tea Research Institute, Zhejiang University, #866, Yuhangtang Road, Hangzhou 310058, China.

Green tea catechins (GTCs) are a group of bioactive polyphenolic compounds found in fresh tea leaves ( (L.) O. Kuntze).

View Article and Find Full Text PDF

Distribution of potentially toxic elements in sediments of the municipal river channel (Balu), Dhaka, Bangladesh: Ecological and health risks assessment.

J Contam Hydrol

January 2025

International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Jiangsu, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China. Electronic address:

The concern of potential toxic elements (PTEs) contamination in the river ecosystem is growing due to anthropological activity. The contents of seven PTEs in sediments from the Balu River channel were analyzed using atomic absorption spectroscopy (AAS) and an environmental risk model. Several PTEs were found in the sediment at high levels, including zinc (Zn), copper (Cu), arsenic (As), lead (Pb), cadmium (Cd), nickel (Ni), and mercury (Hg), that might pose a risk to human and ecological health.

View Article and Find Full Text PDF

Indoor dust can adsorb various pollutants and long-term deposition can significantly impact air quality and human health. This study investigated the occurrence, source apportionment, and health risks associated with polycyclic aromatic hydrocarbons (PAHs) and their derivatives (d-PAHs) in indoor dust, by focusing on residential and public buildings in Nanjing, China. The concentration of 16 PAHs and 27 d-PAHs ranged from 511 to 5472 ng/g and from 422 to 2904 ng/g, with the most abundant compounds being fluoranthene and 1,2-benz[a]anthraquinone, respectively.

View Article and Find Full Text PDF

Cotton undergarments as a tool for polycyclic aromatic hydrocarbons whole body dosimetry of firefighters.

J Occup Environ Hyg

January 2025

Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany.

Firefighters are exposed to a variety of hazardous substances during firefighting activities. Fire smoke contains polycyclic aromatic hydrocarbons (PAHs) some of which have been shown to cause cancer in humans. To assess dermal exposure of firefighters during real-life firefighting, a whole-body dosimetry method was applied to determine the PAH that settles on the skin despite firefighters wearing personal protective equipment (PPE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!