Thermal stress and consequent fracture in frozen organs or cell suspensions have been proposed to be two causes of cell cryoinjury. A specific device was developed to study the thermal stress and the fracture phenomena during a slow cooling process of isotonic NaCl solutions with different concentrations of glycerol (cryoprotectant) in a cylindrical tube. It was shown from the experimental results that glycerol significantly influenced the solidification process of the ternary solutions and reduced the thermal stress. The higher the initial glycerol concentration, the lower the thermal stress in the frozen solutions. Glycerol concentrations over 0.3 M were sufficient to eliminate the fracture of the frozen solutions under the present experimental conditions. To explain the action of glycerol in reducing the thermal stress and preventing the ice fracture, a further study on ice crystal formation and growth of ice in these solutions was undertaken using cryomicroscopy. It is known from previous studies that an increase of initial glycerol concentration reduced frozen fraction of water in the solution at any given low temperature due to colligative properties of solution, which reduced the total ice volume expansion during water solidification. The present cryomicroscopic investigation showed that under a fixed cooling condition the different initial glycerol concentrations induced the different microstructures of the frozen solutions at not only a given low temperature but also a given frozen fraction of water. It has been known that ice volume expansion during solidification is a major factor causing the thermal stress and the interior microstructure is critical for the mechanical strength of a solid. Therefore, functions of glycerol in reducing the total ice volume expansion during water solidification and in influencing interior microstructure of the ice may contribute to reduce the thermal stress and prevent the fracture in the frozen solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1006/cryo.1995.1026DOI Listing

Publication Analysis

Top Keywords

thermal stress
28
frozen solutions
16
fracture frozen
12
initial glycerol
12
ice volume
12
volume expansion
12
glycerol
9
fracture phenomena
8
glycerol concentration
8
glycerol concentrations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!