Mineral content of the diet alters sucrose-induced obesity in rats.

Physiol Behav

Department of Psychology, Tufts University, Medford, MA 02155, USA.

Published: April 1995

The effects of dietary mineral levels on caloric intake, nutrient choice, body weight, adipose tissue weight, interscapular brown adipose tissue (IBAT) weight, and thermogenic capacity, and plasma insulin and glucose levels were examined in adult male Sprague-Dawley rats. In Experiments 1 and 2, rats were fed a purified diet with zinc (Zn), chromium (Cr), and selenium (Se) added, or the same diet without the addition of these minerals. In Experiment 3, the effects of Zn and Cr were examined separately. In all experiments, half of the rats in each diet group were given a 32% sucrose solution in addition to their standard diet and water. Rats given sucrose consumed more calories and gained more weight than rats not given sucrose. However, mineral levels altered the effects of sucrose on these measures. Added minerals increased percent sucrose intake, reduced weight gain and feed efficiency, increased GDP binding in IBAT mitochondria, improved glucose tolerance, and reduced plasma insulin levels. The reduction in weight gain and increased feed efficiency found when Zn alone was added to the diet was independent of sucrose condition. In comparison, the alterations observed in these measures when Cr alone was added to the diet varied as a function of sucrose availability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0031-9384(94)00312-2DOI Listing

Publication Analysis

Top Keywords

mineral levels
8
adipose tissue
8
plasma insulin
8
rats sucrose
8
weight gain
8
feed efficiency
8
diet
7
sucrose
7
rats
6
weight
6

Similar Publications

Here, a high molecular weight polysaccharide preparation from Ophiocordyceps gracilis was utilized as a stabilizer and dispersant to create nanocomposites based on selenium nanoparticles (GSP-1a-SeNPs). The NPs showed the highest stability at a selenium/polysaccharide mass ratio of 1:1, with no significant change after 28 days of storage at 4 °C. The NPs exhibited a symmetrical spheroid structure with an average diameter of 85.

View Article and Find Full Text PDF

Physico-chemical, nutritional, and anti-inflammatory properties of processed Garcinia pedunculata fruit: A combined in vitro and in silico approach.

Food Res Int

February 2025

Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

This study aimed to evaluate the physico-chemical, nutritional, antioxidant, and anti-inflammatory properties of Garcinia pedunculata fruit powders obtained from different drying methods to explore their potential use in health-promoting functional foods. The fruits were processed at mature and ripe stages. Molecular modeling studies were also performed to find effective inhibitors from G.

View Article and Find Full Text PDF

Metabolomics and ionomics reveal the quality differences among peach, acacia and karaya gums.

Food Res Int

February 2025

College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, 50 Zhongling Street, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China. Electronic address:

Despite the diverse industrial applications and health benefits of plant gums, significant variations in quality among different types remain underexplored. This study investigates the differences in antioxidant activity, mineral elements, and metabolic profiles among peach, acacia, and karaya gums. Our findings reveal significant differences in total phenol content, with peach gum exhibiting the highest (20.

View Article and Find Full Text PDF

Oxidative stress and inflammatory dysregulation play crucial roles in pathogenesis of acute lung injury (ALI), and their cyclic synergy drives excessive inflammatory responses and further exacerbates ALI. Therefore, new effective strategies to treat ALI are urgently needed. Herein, a novel synergistic selenium based chlorogenic acid nanoparticle was developed to disrupt the cyclic synergistic effect between oxidative stress and inflammatory response in ALI.

View Article and Find Full Text PDF

Background: Oxidative damage has been implicated in multiple neurodegenerative diseases, including epilepsy. Selenium, in the form of selenoproteins is an integral part of the human antioxidant defense system. Though a relationship between the altered selenium levels and epilepsy has been reported, limited evidence is available about the expression pattern of selenoproteins in epileptic patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!