The polymerase chain reaction with degenerate primers corresponding to the most conservative amino acids 16-21 (ELEKEF) and 49-54 (WFQNRR) of the Antennapedia class homeodomain was used for the amplification of cDNA from regenerating planarians (asexual race of Dugesia tigrina). A total of six new Antennapedia-like homeobox sequences, designated Dutarh-1-Dutarh-6 (Dugesia tigrina asexual race homeobox gene), were obtained. Their comparison with other homeobox genes using a "Genebee" software (the EMBL Data Library) showed that all sequences except Dutarh-6 belong to the Antennapedia class. Dutarh-6 is closely related to a recently described novel homeobox gene subfamily that includes mouse mesodermal homeobox genes Mox-1 and Mox-2 and rat homeobox gene Gax.

Download full-text PDF

Source

Publication Analysis

Top Keywords

homeobox genes
12
homeobox gene
12
antennapedia class
8
asexual race
8
dugesia tigrina
8
homeobox
7
[the cloning
4
cloning fragments
4
fragments homeobox
4
genes expressed
4

Similar Publications

Homeobox C4 transcription factor promotes adipose tissue thermogenesis.

Diabetes

January 2025

Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.

The homeobox (HOX) family has shown potential in adipose development and function, yet the specific HOX proteins fueling adipose thermogenesis remain elusive. In this study, we uncovered the novel function of HOXC4 in stimulating adipose thermogenesis. Our bioinformatic analysis indicated an enrichment of Hoxc4 co-expressed genes in metabolic pathways and linked HOXC4 polymorphisms to metabolic parameters, suggesting its involvement in metabolic regulation.

View Article and Find Full Text PDF

Leaf vein, an essential part of leaf architecture, plays significant roles in shaping the proper leaf size. To date, the molecular mechanisms governing leaf development including leaf venation patterning remains poorly understood in birch. Here, we performed the genome-wide identification of homeodomain-like (HD-like) superfamily genes using phylogenetic analysis and revealed the functional role of a potential HD-like gene in leaf growth and development using transgenic technology and transcriptomic sequencing.

View Article and Find Full Text PDF

Aging adversely affects the self-renewal and differentiation capabilities of stem cells, which impairs tissue regeneration as well as the homeostasis. Epigenetic mechanisms, specifically DNA methylation, play a key role in the maintenance of pluripotency in stem cells and regulation of pluripotency-related gene expression. Age-related modifications in methylation patterns could influence the expression of genes critical for stem cell potency maintenance, including transcription factors Nanog and Sox2.

View Article and Find Full Text PDF

This study examined the molecular phenotypes of adipose-derived stem cells (ASCs) and vaginal fibroblasts (VFBs) and assessed whether pelvic organ prolapse (POP) affects their biological properties. We performed RNA sequencing of paired ASCs and VFBs from six patients with POP and six controls (CTRL). The transcriptomes of POP and CTRL in either ASCs or VFBs were compared (DESeq2, false discovery rate (FDR) < 0.

View Article and Find Full Text PDF

Allelic transcriptomic profiling identifies the role of PRD-like homeobox genes in human embryonic-cleavage-stage arrest.

Dev Cell

January 2025

Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China. Electronic address:

Cleavage-stage arrest in human embryos substantially limits the success rate of infertility treatment, with maternal-to-zygotic transition (MZT) abnormalities being a potential contributor. However, the underlying mechanisms and regulators remain unclear. Here, by performing allelic transcriptome analysis on human preimplantation embryos, we accurately quantified MZT progression by allelic ratio and identified a fraction of 8-cell embryos, at the appropriate developmental time point and exhibiting normal morphology, were in transcriptionally arrested status.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!