Identification of the primase active site of the herpes simplex virus type 1 helicase-primase.

J Biol Chem

Department of Immunological Diseases, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877-0368, USA.

Published: June 1995

Herpes simplex virus type 1 (HSV-1) encodes a heterotrimeric helicase-primase composed of the products of the three DNA replication-specific genes UL5, UL8, and UL52 (Crute, J. J., and Lehman, I. R. (1991) J. Biol. Chem. 266, 4484-4488). The UL5 and UL52 products constitute a heterodimeric subassembly of the holoenzyme that contains both helicase and primase activities (Calder, J. M., and Stow, N. D. (1990) Nucleic Acids Res. 18, 3573-3578; Dodson, M. S., and Lehman, I. R. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 1105-1109). The role of the UL52 product in the active HSV-1 helicase-primase was examined. A sequence located between residues 610 and 636 on the UL52 protein was found to be conserved among the UL52 homologues of eight herpesviruses. The carboxyl-terminal portion of this conserved sequence consisted of two Asp residues separated by a variable hydrophobic amino acid residue and is analogous to the divalent metal-binding site of DNA polymerases and several DNA primases. This motif has been designated the herpesvirus primase DXD motif. To study the role of the HSV-1 primase DXD motif in primase action, three site-directed changes were introduced into the UL52 gene. The helicase activity of the recombinant holoenzymes was unaffected by any of the introduced changes. Changing either of the two Asp residues that constitute the divalent metal-binding site (Asp628 or Asp630) to Ala dramatically reduced the primase activity of the HSV-1 helicase-primase holoenzyme in vitro, whereas alteration of the nearby conserved residue Asn624 to Gly had minimal effect. Therefore, in the three-subunit HSV-1 helicase-primase, the UL52 product provides at least a part of the primase catalytic site.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.270.23.14148DOI Listing

Publication Analysis

Top Keywords

hsv-1 helicase-primase
12
herpes simplex
8
simplex virus
8
virus type
8
lehman 1991
8
ul52 product
8
asp residues
8
divalent metal-binding
8
metal-binding site
8
primase dxd
8

Similar Publications

Combined use of pritelivir with acyclovir or foscarnet suppresses evolution of HSV-1 drug resistance.

Virus Evol

November 2024

Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 box 1043, Leuven 3000, Belgium.

The widespread use of antivirals in immunocompromised individuals has led to frequent occurrences of drug-resistant herpes simplex virus 1 (HSV-1) infections. Current antivirals target the viral DNA polymerase (DP), resulting in cross-resistance patterns that emphasize the need for novel treatment strategies. In this study, we assessed whether combining antivirals with different targets affects drug resistance emergence by passaging wild-type HSV-1 under increasing concentrations of acyclovir (ACV), foscarnet (phosphonoformic acid, PFA), or the helicase-primase inhibitor pritelivir (PTV), individually or in combination (ACV + PTV or PFA + PTV).

View Article and Find Full Text PDF

Helicase-primase is an interesting target for small-molecule therapy of herpes simplex virus (HSV) infections. With amenamevir already approved for varicella-zoster virus and herpes simplex in Japan and with 's granted breakthrough therapy designation for the treatment of acyclovir-resistant HSV infections in immunocompromised patients, the target has sparked interest in helicase-primase inhibitors (HPIs). Here, we analyze the first patent application from Gilead in this field, which pursued a me-too approach combining elements from an old Bayer together with a recent Medshine HPI application (which covers the Phaeno Therapeutics drug candidate ).

View Article and Find Full Text PDF

A 34-year-old woman received umbilical cord blood transplantation for refractory T-cell prolymphocytic leukemia after salvage therapy with alemtuzumab. She developed right angular cheilitis on the 46th day after transplantation, which worsened after receiving systemic steroid therapy for extensive chronic graft versus host disease. The treatment dosage of acyclovir (ACV), ganciclovir, and vidarabine ointment was not effective due to ACV-resistant mutations of the herpes simplex virus type 1 (HSV-1) in the thymidine kinase domain.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to evaluate the effectiveness and tolerance of amenamevir (AMNV) in treating recalcitrant herpes simplex keratitis (HSK) caused by acyclovir-resistant herpes simplex virus 1 strains.
  • Six patients were analyzed retrospectively after failing traditional antiviral treatments, focusing on recurrence rates and visual acuity during AMNV therapy.
  • Results showed that 66% of patients did not have any recurrences on AMNV, leading to a significant reduction in HSK episodes and some improvement in vision, although the latter was not statistically significant likely due to the small sample size.
View Article and Find Full Text PDF

Replacement of sulfonamide by sulfoximine within a helicase-primase inhibitor with restricted flexibility.

Bioorg Med Chem Lett

July 2024

Innovative Molecules GmbH, Lipowsky Str. 10, 81373 Munich, Germany.

Helicase-primase is an interesting target for the therapy of herpes simplex virus (HSV) infections. Since amenamevir is already approved for varicella-zoster virus (VZV) and HSV in Japan and pritelivir has received breakthrough therapy status for the treatment of acyclovir-resistant HSV infections in immunocompromised patients, the target has sparked interest in me-too approaches. Here, we describe the attempt to improve nervous tissue penetration in Phaeno Therapeutics drug candidate HN0037 to target the latent reservoir of HSV by installing less polar moieties, mainly a difluorophenyl instead of a pyridyl group, and replacing the primary sulfonamide with a methyl sulfoximine moiety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!