Pre-resonance Raman spectroscopy has been applied to compare the vibrational modes of the R and S chiral isomers of 1-deaza-7,8-dihydropteridine when they are bound to tubulin. The main Raman bands are due to the chromophore and are coupled with the pi-pi electronic transition of C = C and C = N vibrational stretching. On binding to tubulin, the Raman spectra of both isomers are modified. However, the modifications induced are different for each isomer. The Raman bands due to C = C stretching from the phenyl ring are more strongly modified for the bound R isomer than for the S isomer. This leads us to suggest that R and S isomers differ in terms of their orientation in front of the binding locus of tubulin. In fact, with respect to the orientation of the bulky methyl group, the chromophore of the R isomer is more likely to be positioned against the external surface of either tubulin or GTPase proteins, while that of the S isomer is likely to be positioned away from the surface. The conformational changes induced in tubulin by R and S isomers have also been studied by Fourier transform infrared spectroscopy and by the analysis of amide I and II absorption bands. Both enantiomers induce similar minor changes to the tubulin secondary structure, corresponding to a decrease in the disordered alpha-helical content and accompanied by an increase in the undefined conformation content.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0141-8130(95)93519-4DOI Listing

Publication Analysis

Top Keywords

fourier transform
8
transform infrared
8
infrared spectroscopy
8
raman bands
8
isomer positioned
8
tubulin
7
raman
5
isomer
5
molecular interaction
4
interaction tubulin
4

Similar Publications

This study focused on simulating the adsorption-based separation of Methylene Blue (MB) dye utilising Oryza sativa straw biomass (OSSB). Three distinct modelling approaches were employed: artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and response surface methodology (RSM). To evaluate the adsorbent's potential, assessments were conducted using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

As global demand for fossil fuels rises amidst depleting reserves and environmental concerns, exploring sustainable and renewable energy sources has become imperative. This study investigated the pyrolysis of corncob, a widely available agricultural waste, using urea as a catalyst to enhance bio-oil production. The aim was to determine the optimum urea concentration and pyrolysis temperature for bio-oil yield from corncob.

View Article and Find Full Text PDF

Stability Study of Anticoagulant Hydrogel Coatings Toward Long-Term Cardiovascular Devices.

Langmuir

January 2025

State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, P. R. China.

Implantable cardiovascular devices have revolutionized the treatment of cardiovascular diseases, yet their long-term functionality without causing thrombosis is a persistent challenge. Although the surface modification of anticoagulant coating has greatly improved the biocompatibility of the devices, its long-term stability in complex physiological environments still remains questionable. Herein, the stability of three anticoagulant hydrogel coatings, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), poly(sodium 2-acryloyl-2-methylpropanesulfonate) (PAMPS), and poly(4-styrenesulfonate sodium) (PSS), is studied.

View Article and Find Full Text PDF

Cellulose-based poly(ionic liquid)s: Correlations between degree of substitution and alkyl side chain length with conductive and morphological properties.

Int J Biol Macromol

January 2025

Department of Chemistry, Rutgers University, Camden, NJ, United States of America; Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States of America. Electronic address:

Ion transport in solid polymer electrolytes is crucial for applications like energy conversion and storage, as well as carbon dioxide capture. However, most of the materials studied in this area are petroleum-based. Natural materials (biopolymers) have the potential to act as alternatives to petroleum-based products and, when derived with ionic liquid (IL) functionalities, present a sustainable alternative for conductive materials by offering tunable morphological, thermal, and mechanical properties.

View Article and Find Full Text PDF

Green dyeing of cellulose diacetate fabric with disperse dyes in a liquid paraffin medium.

Int J Biol Macromol

January 2025

Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilisation of Bio-based Textile Materials, Wuhan Textile University, Wuhan 430200, China; Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430200, China. Electronic address:

The conventional method of dyeing cellulose diacetate (CDA) fabric with disperse dyes consumes significant amounts of fresh water and dispersants, contributing to environmental pollution and health hazards. This study explored the use of liquid paraffin as an alternative to aqueous mediums for dyeing CDA fabric with Disperse Blue 56 dyes, eliminating the need for dispersants. An L orthogonal array was used to optimize dyeing conditions based on the color strength values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!