Mechanisms of nuclear reprogramming and assessment of potential malfunctions that could be deleterious for development were evaluated in rabbit zygotes, parthenotes, and nuclear transfer embryos by analysis of DNA replication, nucleolar fibrillarin label, and localization of nuclear material reactive to the MPM-2 antibody. Nuclear transfer embryos were derived from G1/early S-phase donor nuclei and MII oocytes. In nuclear transfer embryos, DNA rereplication was likely to have occurred because label was incorporated, possibly in the centromeric regions of the chromosomes, prior to premature chromosome condensation and again following pronuclear formation. In parthenotes, DNA replication began very late in the cell cycle, which may be due to deficiencies in the artificial activation stimulus. The presence of fibrillarin label in the nucleolus was used as an indication of nucleolar transcriptional activity. Fibrillarin label was absent in embryos of all types up to the 16-32-cell stage. Although fibrillarin reappeared in nuclear transfer and parthenote embryos at the appropriate stage, not all blastomeres showed label indicating impaired development in these embryos. Labelling of phosphorylated epitopes by MPM-2 antibody showed a change in pattern of labelling during early development. Early cleavage stage embryos did not exhibit labelling over the spindle poles as did blastomeres from 32-cell embryos and tissue culture cells. All cell types exhibited labelling during interphase as dots located primarily over the nucleus in blastomeres from 32-cell embryos and in tissue culture cells, together with cytoplasmic label in embryos at early cleavage stages. Nuclear transplant embryos had a normal pattern of MPM-2 label. In contrast, the appearance of MPM-2 label in parthenotes depended on the type of calcium stimulation. These results demonstrate defects in DNA synthesis, nucleolar activity, and specific phosphorylation events, likely resulting from an improper activation stimulus and chromosome condensation in the transplanted nucleus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrd.1080400305 | DOI Listing |
Fluids Barriers CNS
January 2025
Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, O&N II Herestraat 49 box 820, 3000, Leuven, Belgium.
Background: Therapeutic antibodies for the treatment of neurological disease show great potential, but their applications are rather limited due to limited brain exposure. The most well-studied approach to enhance brain influx of protein therapeutics, is receptor-mediated transcytosis (RMT) by targeting nutrient receptors to shuttle protein therapeutics over the blood-brain barrier (BBB) along with their endogenous cargos. While higher brain exposure is achieved with RMT, the timeframe is short due to rather fast brain clearance.
View Article and Find Full Text PDFInsights Imaging
January 2025
Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China.
Objectives: To develop and validate radiomics and deep learning models based on contrast-enhanced MRI (CE-MRI) for differentiating dual-phenotype hepatocellular carcinoma (DPHCC) from HCC and intrahepatic cholangiocarcinoma (ICC).
Methods: Our study consisted of 381 patients from four centers with 138 HCCs, 122 DPHCCs, and 121 ICCs (244 for training and 62 for internal tests, centers 1 and 2; 75 for external tests, centers 3 and 4). Radiomics, deep transfer learning (DTL), and fusion models based on CE-MRI were established for differential diagnosis, respectively, and their diagnostic performances were compared using the confusion matrix and area under the receiver operating characteristic (ROC) curve (AUC).
J Chem Phys
January 2025
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
Time-resolved spectroscopy is an important tool for probing photochemically induced nonequilibrium dynamics and energy transfer. Herein, a method is developed for the ab initio simulation of vibronic spectra and dynamical processes. This framework utilizes the recently developed nuclear-electronic orbital time-dependent configuration interaction (NEO-TDCI) approach, which treats all electrons and specified nuclei quantum mechanically on the same footing.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States.
The nuclear pore complex (NPC) is the proteinous nanopore that solely regulates molecular transport between the nucleus and cytoplasm of a eukaryotic cell. Hypothetically, the NPC utilizes the hydrophobic barriers based on the repeats of phenylalanine-glycine (FG) units to selectively and efficiently transport macromolecules. Herein, we quantitatively assess the hydrophobicity of transport barriers confined in the nanopore by applying scanning electrochemical microscopy (SECM).
View Article and Find Full Text PDFChemistry
January 2025
Karlsruhe Institute of Technology, Institute for biological interfaces 1 (IBG-1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, GERMANY.
Enantioselectivity is a key advantage of enzymatic catalysis. Understanding the most important factors influencing enantioselectivity necessitates thorough investigation for each specific enzyme. In this study, we explore various approaches to optimize reaction conditions for organosilicon production using an immobilized Cytochrome C recently tailored via directed evolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!