Natural genetic transformation in Haemophilus influenzae involves DNA binding, uptake, translocation, and recombination. In this study, we cloned and sequenced a 3.8-kbp H. influenzae DNA segment capable of complementing in trans the transformation defect of an H. influenzae strain carrying the tfo-37 mutation. We used subcloning, deletion analysis, and in vivo protein labeling experiments to more precisely define the gene required for efficient DNA transformation on the cloned DNA. A novel gene, which we called dprA+, was shown to encode a 41.6-kDa polypeptide that was required for efficient chromosomal but not plasmid DNA transformation. Analysis of the deduced amino acid sequence of DprA suggested that it may be an inner membrane protein, which is consistent with its apparent role in DNA processing during transformation. Four other open reading frames (ORFs) on the cloned DNA segment were identified. Two ORFs were homologous to the phosphofructokinase A (pfkA) and alpha-isopropyl malate synthase (leuA) genes of Escherichia coli and Salmonella typhimurium, respectively. Homologs for the two other ORFs could not be identified.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC177016PMC
http://dx.doi.org/10.1128/jb.177.11.3235-3240.1995DOI Listing

Publication Analysis

Top Keywords

dna transformation
12
dna
9
haemophilus influenzae
8
gene required
8
chromosomal plasmid
8
plasmid dna
8
dna segment
8
required efficient
8
cloned dna
8
transformation
6

Similar Publications

Agrobacterium-mediated gene transformation method is a vital molecular biology technique employed to develop transgenic plants. Plants are genetically engineered to develop disease-free varieties, knock out unsettling traits for crop improvement, or incorporate an antigenic protein to make the plant a green factory for edible vaccines. The method's robustness was validated through successful transformations, demonstrating its effectiveness as a standard approach for researchers working in plant biotechnology.

View Article and Find Full Text PDF

Immune Dysregulation and Cellular Composition in Lichen Sclerosus Revealed by Integrative Epigenetic Analysis with Cell Type Deconvolution.

J Inflamm Res

January 2025

Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education; Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology; National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering); School of Engineering Medicine, Beihang University, Beijing, 100191, People's Republic of China.

Background: Lichen sclerosus (LS) is a chronic inflammatory disease affecting skin and mucosal tissues, particularly external genitalia, with a risk of cancer. Its etiology is unknown, possibly involving immune dysregulation and inflammation.

Methods: Study used DNA methylation (DNAme) and single-cell RNA sequencing (scRNA-seq) to compare LS with normal skin.

View Article and Find Full Text PDF

FAP-targeted radioligand therapy with Ga/Lu-DOTA-2P(FAPI) enhance immunogenicity and synergize with PD-L1 inhibitors for improved antitumor efficacy.

J Immunother Cancer

January 2025

Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China

Background: Fibroblast activation protein (FAP)-targeted radioligand therapy, with immunomodulatory effects, has shown efficacy in both preclinical and clinical studies. We recently reported on a novel dimeric FAP-targeting radiopharmaceutical, Ga/Lu-DOTA-2P(FAPI), which demonstrated increased tumor uptake and prolonged retention in various cancers. However, further exploration is required to understand the therapeutic efficacy and underlying mechanisms of combining Ga/Lu-DOTA-2P(FAPI) radioligand therapy with PD-1/PD-L1 immunotherapy.

View Article and Find Full Text PDF

Coastal eutrophication transforms shallow micro-benthic reef communities.

Sci Total Environ

January 2025

Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; IBED, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, the Netherlands.

Article Synopsis
  • Coral reefs worldwide are suffering from coastal eutrophication, leading to decreased coral cover and increased harmful organisms like algae and invertebrates.
  • The study focuses on how micro-benthic communities, specifically foraminifera, diatoms, and bacteria, are influenced by turbidity associated with eutrophication in the Spermonde Archipelago, using environmental DNA analysis.
  • Findings indicate that shallower reef flat communities are much more affected by turbidity than deeper reef slope communities, with foraminifera and diatom ESVs serving as indicators of varying turbidity levels, thus highlighting the influence of local environmental conditions on these micro-benthic communities.
View Article and Find Full Text PDF

Prevalence of Antibiotic Resistance Genes in Differently Processed Smoothies and Fresh Produce from Austria.

Foods

December 2024

Division of Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety AGES, 1220 Vienna, Austria.

Plant-derived foods are potential vehicles for microbial antibiotic resistance genes (ARGs), which can be transferred to the human microbiome if consumed raw or minimally processed. The aim of this study was to determine the prevalence and the amount of clinically relevant ARGs and mobile genetic elements (MGEs) in differently processed smoothies (freshly prepared, cold-pressed, pasteurized and high-pressure processed) and fresh produce samples (organically and conventionally cultivated) to assess potential health hazards associated with their consumption. The MGE and the class 1 integron-integrase gene were detected by probe-based qPCR in concentrations up to 10 copies/mL in all smoothies, lettuce, carrots and a single tomato sample.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!