A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of a new easy complementation assay for DNA repair deficient human syndromes using cloned repair genes. | LitMetric

Development of a new easy complementation assay for DNA repair deficient human syndromes using cloned repair genes.

Carcinogenesis

Laboratory of Molecular Genetics, UPR 42 CNRS IFC1 Institu de Recherches sur le Cancer, Villejuif, France.

Published: May 1995

Nucleotide excision repair (NER)-deficient human cells have been assigned so far to a genetic complementation group by a somatic cell fusion assay and, more recently, by microinjection of cloned DNA repair genes. We describe a new technique, based on the host cell reactivation assay, for the rapid determination of the complementation group of NER-deficient xeroderma pigmentosum (XP), Cockayne's syndrome (CS) and photosensitive trichothiodystrophy (TTD) human cells by cotransfection of a UV-irradiated reporter plasmid with a second vector containing a cloned repair gene. Expression of the reporter gene, either chloramphenicol acetyltransferase (CAT) or luciferase, reflects the DNA repair ability restored by the introduction of the appropriate repair gene. All genetically characterized XP, CS and TTD/XP-D cells tested failed to express the UV-irradiated reporter gene, this reflecting their NER deficiency whereas cotransfection with the repair plasmid expressing a gene specific for the given complementation group increased the enzyme activity to the level reached by normal cells. Selective recovery of both reporter enzyme activities was observed after cotransfection with the XPC gene for the XP17VI cells and with the XPA gene for both XP18VI and XP19VI cells. Using this method, we assigned three new NER-deficient human cells obtained from patients presenting clinical symptoms described as classical XP to either XP group A (XP18VI and XP19VI) and XP group C (XP17VI). Therefore, this technique increases the range of methods now available to determine the complementation group of new NER deficient patients with the advantage, unlike the somatic cell fusion assay or the microinjection procedure, of being simple, rapid, and inexpensive.

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/16.5.1003DOI Listing

Publication Analysis

Top Keywords

complementation group
16
dna repair
12
human cells
12
repair
8
cloned repair
8
repair genes
8
ner-deficient human
8
somatic cell
8
cell fusion
8
fusion assay
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!