Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nucleotide excision repair (NER)-deficient human cells have been assigned so far to a genetic complementation group by a somatic cell fusion assay and, more recently, by microinjection of cloned DNA repair genes. We describe a new technique, based on the host cell reactivation assay, for the rapid determination of the complementation group of NER-deficient xeroderma pigmentosum (XP), Cockayne's syndrome (CS) and photosensitive trichothiodystrophy (TTD) human cells by cotransfection of a UV-irradiated reporter plasmid with a second vector containing a cloned repair gene. Expression of the reporter gene, either chloramphenicol acetyltransferase (CAT) or luciferase, reflects the DNA repair ability restored by the introduction of the appropriate repair gene. All genetically characterized XP, CS and TTD/XP-D cells tested failed to express the UV-irradiated reporter gene, this reflecting their NER deficiency whereas cotransfection with the repair plasmid expressing a gene specific for the given complementation group increased the enzyme activity to the level reached by normal cells. Selective recovery of both reporter enzyme activities was observed after cotransfection with the XPC gene for the XP17VI cells and with the XPA gene for both XP18VI and XP19VI cells. Using this method, we assigned three new NER-deficient human cells obtained from patients presenting clinical symptoms described as classical XP to either XP group A (XP18VI and XP19VI) and XP group C (XP17VI). Therefore, this technique increases the range of methods now available to determine the complementation group of new NER deficient patients with the advantage, unlike the somatic cell fusion assay or the microinjection procedure, of being simple, rapid, and inexpensive.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/carcin/16.5.1003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!