We assembled 390 chemicals with a structure non-alerting to DNA-reactivity (145 carcinogens and 245 non-carcinogens) for which rodent carcinogenicity data were available. These non-alerting chemicals were defined by the absence in their molecules of DNA-reactive (directly or after metabolic activation) alerting structures, as described by Ashby and coworkers (Mutat. Res., 204 (1988) 17-115; Mutat. Res., 223 (1989) 73-103; Mutat. Res., 257 (1991) 209-227; Mutat. Res., 286 (1993) 3-74). Using our software program based on graph theory we analyzed the compounds in order to estimate the program's ability to predict nonalerting carcinogens. Our software fragmented the structural formula of the chemicals into all possible fragments of contiguous atoms with size between 2 and 8 (non-hydrogen) atoms and learned about statistically significant fragments from a training set of chemicals. These fragments were used to predict carcinogenicity or lack thereof in a verification set of compounds. For 390 runs of the software program we used (n - 1) of the chemicals as a training set, to predict the excluded chemical at each run (as a test set). Using two different probability thresholds to select significant fragments (P = 0.05 and P = 0.125 1-tailed according to binomial distribution), we performed two analyses: in the better one (P = 0.05) 19% of the molecules tested lacked significant fragments, for the remaining 81% the observed level of accuracy of the prediction was 66.0% against an expected level of accuracy of 51.7%. The difference was highly significant (P < 0.0001). We also examined the more significant activating fragments (biophores) and discussed at length both their biological plausibility and the working hypothesis that additional alerting structures for carcinogenicity (not only those related to genotoxicity) can be detected using this type of SAR approach. This new class of alerting structures could identify subfamilies of congeneric analogs active through mechanisms of receptor mediated carcinogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0009-2797(95)03609-x | DOI Listing |
Mutat Res Genet Toxicol Environ Mutagen
January 2025
Institute of Pharmacology and Toxicology, University of Wuerzburg, Versbacher Strasse 9, 97078 Würzburg, Germany. Electronic address:
There has been a shift from traditional animal models towards alternative methods. While 2D cell culture has a decade long tradition, more advances methods like 3D cultures, organoids, and co-culture techniques, which better mimic in vivo conditions, are not yet well established in every research area. Genotoxicity assessment is an integral part of toxicological testing or regulatory approval of pharmaceuticals and chemicals.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
January 2025
Research & Development, Kongo Chemical Co., Ltd, Himata, Toyama 9300912, Japan.
Photodegradation of azilsartan yields a phenanthridine derivative (APP). We suspected that APP could be a DNA-reactive substance, since many phenanthridine derivatives are mutagenic. In silico quantitative structure-activity relationship analysis indicated potential mutagenicity of APP, due to DNA reactivity at the 6-aminophenanthridine moiety.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
January 2025
Health Promotion Program University of Franca, SP, Brazil. Electronic address:
We have studied the presence and frequency of micronuclei in exfoliated oral mucosa cells of full-term newborns and their association with maternal prenatal factors. We report an analytical, observational, cross-sectional, prospective study that includes 97 preterm infants (<37 weeks), 37 newborns from mothers with comorbidities, and 60 newborns from mothers without comorbidities, in a tertiary public hospital. Oral mucosa cells were collected within 24 h after birth.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
January 2025
Universidad del Cauca, Facultad de Ciencias de la Salud, Departamento de Patología, Grupo de investigación en Inmunología y Enfermedades Infecciosas, Popayán (Cauca), Colombia. Electronic address:
Zinc oxide nanoparticles (ZnO-NPs) are of interest in biomedical applications, environmental remediation, and agriculture. ZnO-NPs inhibit the growth of phytopathogenic fungi and bacteria. We have evaluated their effects on mitochondrial function and the induction of membrane damage, apoptosis, and DNA damage in human peripheral blood mononuclear cells (PBMC) in vitro.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
January 2025
Free University of Berlin, Institute of Pharmacy, Pharmacology and Toxicology, Berlin, Germany; BASF SE, Experimental Toxicology and Ecology, Ludwigshafen am Rhein, Germany.
Mutagenicity testing is a component of the hazard assessment of industrial chemicals, biocides, and pesticides. Mutations induced by test substances can be detected by in vitro and in vivo methods that have been adopted as OECD Test Guidelines. One of these in vivo methods is the Transgenic Rodent Assay (TGRA), OECD test guideline no.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!