Evidence for the involvement of hippocampal CO production in the acquisition and consolidation of inhibitory avoidance learning.

Neuroreport

Instituto de Biologia Celular, Facultad de Medicina, Universidad de Buenos Aires, Argentina.

Published: February 1995

Carbon monoxide (CO), produced through the action of haem oxygenase (HO) isoenzymes, has been recently postulated as a retrograde messenger in the early stages of long-term potentiation (LTP). In the present study, rats submitted to an inhibitory avoidance task there is a significant increase (+76%) in hippocampal HO activity immediately after training (0 min), but not at 60 min post-training. No changes were observed in cerebral cortical and cerebellar HO activity. Bilateral intrahippocampal infusion of the HO inhibitor zinc-protoporphyrin-IX (ZnPP) (2 micrograms side-1) caused full amnesia for inhibitory avoidance when given 10 min before training or immediately after training, but not 60 min after training. These findings provide evidence that CO production in the hippocampus is important for the early stages of memory processing of an inhibitory avoidance training.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00001756-199502000-00027DOI Listing

Publication Analysis

Top Keywords

inhibitory avoidance
16
early stages
8
training min
8
min training
8
training
5
evidence involvement
4
involvement hippocampal
4
hippocampal production
4
production acquisition
4
acquisition consolidation
4

Similar Publications

Stressful and emotionally arousing experiences induce the release of noradrenergic and glucocorticoid hormones that synergistically strengthen memories but differentially regulate qualitative aspects of memory. This highlights the need for sophisticated behavioral tasks that allow for the assessment of memory quality. The dual-event inhibitory avoidance task for rats is such a behavioral task designed to evaluate both the strength and specificity of memory.

View Article and Find Full Text PDF

Linezolid, a widely used oxazolidinone antibiotic, exhibits potent activity against resistant bacterial infections but is associated with serotonergic toxicity, primarily due to its inhibition of monoamine oxidase (MAO). MAOs, consisting of MAO-A and MAO-B isoforms, play crucial roles in neurotransmitter metabolism, with implications for neurodegenerative disorders like Parkinson's and Alzheimer's diseases. This study aims to optimize Linezolid's structure to transform it into a selective MAO-B inhibitor.

View Article and Find Full Text PDF

Design, Synthesis, and Pharmacological Evaluation of Nonsteroidal Tricyclic Ligands as Modulators of GABA Receptors.

J Med Chem

January 2025

Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark.

GABA receptors (GABARs) are the major elements of inhibitory neurotransmission in the central nervous system (CNS). They are established targets for regulation by endogenous brain neuroactive steroids (NASs) such as pregnanolone. However, the complexity of de novo synthesis of NAS derivatives has hindered attempts to circumvent the principal limitations of using endogenous NASs, including selectivity and limited oral bioavailability.

View Article and Find Full Text PDF

Surfactant protein-B (SP-B) deficiency is a lethal neonatal respiratory disease with few therapeutic options. Gene therapy using adeno-associated viruses (AAV) to deliver human cDNA (AAV-hSPB) can improve survival in a mouse model of SP-B deficiency. However, the effect of this gene therapy wanes.

View Article and Find Full Text PDF

Aim: Despite dysfunctional vasoactive intestinal polypeptide-positive interneurons (VIP-INs) being linked to the emergence of neurodevelopmental disorders, the temporal profile of VIP-IN functional maturation and cortical network integration remains unclear.

Methods: Postnatal VIP-IN development was traced with patch clamp experiments in the somatosensory cortex of Vip-IRES-cre x tdTomato mice. Age groups were chosen during barrel field formation, before and after activation of main sensory inputs, and in adult animals (postnatal days (P) P3-4, P8-10, P14-16, and P30-36).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!