Mass transfer plays an important role in solid state fermentation (SSF) systems. Earlier work on SSF in tray bioreactors indicated that steep gaseous concentration gradients developed within the substrate bed, owing to mass transfer resistances, which may adversely affect the bioreactor performance. For all practical purposes these gradients have been eliminated using a packed bed column bioreactor with forced aeration. Gaseous concentrations (oxygen and carbon dioxide) and enzyme activities were measured at various bed heights for various air flow rates during the course of fermentation. The results indicated that concentration gradients were decreased effectively by increasing air flow rate. For example, the actual oxygen and carbon dioxide concentration gradients reduced from 0.07% (v/v) cm-1 and 0.023% (v/v) cm-1 to 0.007% (v/v) cm-1 and 0.0032% (v/v) cm-1 respectively when the air flow rate was increased from 5 dm3 min-1 to 25 dm3 min-1. This resulted in an overall improvement in the performance of the bioreactor in terms of enzyme production.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jctb.280560303DOI Listing

Publication Analysis

Top Keywords

concentration gradients
16
v/v cm-1
16
air flow
12
packed bed
8
solid state
8
gaseous concentration
8
mass transfer
8
oxygen carbon
8
carbon dioxide
8
flow rate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!