A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A fluid dynamic analysis using flow visualization of the Baylor/NASA implantable axial flow blood pump for design improvement. | LitMetric

The Baylor/NASA Axial Blood Flow Pump has been developed for use as an implantable left ventricular assist device (LVAD). The pump is intended as an assist device for either pulmonary or systemic circulatory support for more than 3-months' duration. To date the pump provides acceptable results in terms of thrombus formation and hemolysis (IH of 0.018 g/100 L). A fluid dynamics analysis using flow visualization was performed to investigate the flow fields and to determine areas within the pump that could be improved. These studies focused upon the inflow area in front of the pump. A prototype axial flow pump assembly was constructed to facilitate the flow visualization studies. Particle image tracking velocimetry techniques were used to measure Amberlite particles suspended in a blood analog fluid composed of 63% water and 37% glycerin. This method used a pulsed (612 Hz) laser light to determine flow velocity profiles, shear stress, Reynolds numbers, and stagnant areas within the axial pump. These studies showed that the flow straightener (a vaned assembly in the pump inflow) reduced Reynolds numbers from 4,640 to 2,540 (at 8.5 L/min) and that the flow straightener exacerbates a discontinuity found between it and the impeller. Within the inflow area, a maximum of 80 N/m2 shear stress was measured, which is well below published blood damage thresholds. Design variations were investigated resulting in a smoother flow transition between flow straightener and impeller. These variations must be investigated further to establish a correlation with hemolysis and thrombus formation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1525-1594.1995.tb02306.xDOI Listing

Publication Analysis

Top Keywords

flow
12
flow visualization
12
flow straightener
12
pump
9
analysis flow
8
axial flow
8
flow pump
8
assist device
8
thrombus formation
8
inflow area
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!