The thrombospondins (TSPs) are a family of 5 distinct gene products designated TSP1, -2, -3, -4, and COMP, for cartilage oligomeric matrix protein. TSP1, the prototypical member, is a trimeric extracellular matrix molecule implicated in cell migration and development. TSP1 trimer formation is mediated by interchain disulfide linkage involving two NH2-terminal cysteines. TSP3, a recent addition to the family, is a developmentally regulated heparin binding protein that is similar in sequence to the COOH terminus of TSP1 but has a distinct NH2 terminus. This has raised the question of the oligomeric nature of TSP3 and identification of the cysteine residues involved in oligomer formation. We demonstrate, using a combination of deletional and site-directed mutagenesis and rotary shadowing electron microscopy, that TSP3, like TSP4 and COMP, is a pentameric molecule. TSP3 is held together by interchain disulfide linkage involving just two cysteine residues, Cys-245 and Cys-248.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.270.21.12725DOI Listing

Publication Analysis

Top Keywords

interchain disulfide
12
disulfide linkage
12
linkage involving
12
cysteine residues
12
pentameric molecule
8
held interchain
8
involving cysteine
8
thrombospondin pentameric
4
molecule held
4
residues thrombospondins
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!