In previous works we studied, on cats, the effects of lateral habenula (LH) stimulation on hippocampal units. In particular, the results showed an excitation or an inhibition in relation to the stimulation frequency (0.5-3.0 Hz or 5.0-20 Hz, respectively). All the LH stimulation effects were antagonised by iontophoretic intrahippocampal application of methysergide (MS). In this series of experiments it was possible to demonstrate, on rats, that LH stimulation causes an excitatory effect in a major number of hippocampal units in relation to the frequency increase. The inhibitory effect by iontophoretic serotonine application and the reversible blockade of habenular modulation after iontophoretic methysergide administration on hippocampal units suggest, on rats, the involvement of raphe. Such hypothesis, with anatomical evidences demonstrating an excitatory projection between LH and raphe, was confirmed by data concerning the effects of intraraphal NMDA iontophoretic application on hippocampal units (NMDA application for 30 s = excitation; NMDA administration for 10-15 min = inhibition). All the results suggest an habenular modulation of hippocampus through the involvement of the raphe in the context of which an interneurone is inhibitory on the efferent serotonergic raphe-hippocampus projection. This hypothesis finds further support from MS blockade effect during intraraphal NMDA iontophoretic administration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0361-9230(94)00239-w | DOI Listing |
Neuron
January 2025
Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA. Electronic address:
In this issue of Neuron, Ruggiero et al. demonstrate that hippocampal networks maintain a stable mean firing rate despite unstable individual units. This homeostatic control operates through NMDAR-eEF2K-BDNF signaling in parvalbumin interneurons.
View Article and Find Full Text PDFbioRxiv
January 2025
Center for Theoretical Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY.
Storing complex correlated memories is significantly more efficient when memories are recoded to obtain compressed representations. Previous work has shown that compression can be implemented in a simple neural circuit, which can be described as a sparse autoencoder. The activity of the encoding units in these models recapitulates the activity of hippocampal neurons recorded in multiple experiments.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
School of Systems Science, Beijing Normal University, Beijing, 100875 China.
Hippocampus in the mammalian brain supports navigation by building a cognitive map of the environment. However, only a few studies have investigated cognitive maps in large-scale arenas. To reveal the computational mechanisms underlying the formation of cognitive maps in large-scale environments, we propose a neural network model of the entorhinal-hippocampal neural circuit that integrates both spatial and non-spatial information.
View Article and Find Full Text PDFBrain Res
December 2024
Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
Congenital Zika Syndrome (CZS) is a condition that arises when a neonate presents with abnormalities resulting from Zika virus infection during gestation. While microcephaly is a prominent feature of the syndrome, other forms of brain damage are also observed, often accompanied by significant neurological complications. It is therefore essential to investigate the long-term effects of CZS, with special attention to sex differences, particularly concerning hippocampal function, given its vulnerability to viral infections.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.
In pediatric and intensive care units, propofol is widely used for general anesthesia and sedation procedures as a short-acting anesthetic. Multiple studies have revealed that propofol causes hippocampal injury and cognitive dysfunction in developing animals. As is known, GM1, a type of ganglioside, plays a crucial role in promoting nervous system development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!