The diagnostic informative value of measurements of neuron-specific enolase (NSE) in health, pulmonary cancer (including small-cell one), 8 different diseases, and pregnant patients with gestation periods from 5 to 33 weeks was assessed. Comparison of the results in each of these 10 groups with the results in health controls did not reveal any appreciable differences for any of the groups or between the tested groups. The authors consider that NSE measurements cannot be recommended for use at other than cancer institutions.

Download full-text PDF

Source

Publication Analysis

Top Keywords

neuron-specific enolase
8
[assessment informative
4
informative neuron-specific
4
enolase determined
4
determined immunoenzyme
4
immunoenzyme method]
4
method] diagnostic
4
diagnostic informative
4
informative measurements
4
measurements neuron-specific
4

Similar Publications

Background: Postoperative cognitive dysfunction (POCD) is associated with an increased risk of dementia and may lead to chronic neurodegeneration. The utilization of intraoperative Transcutaneous Electrical Acupoint Stimulation (TEAS) in conjunction with anesthesia is expected to become an effective preventive measure for POCD in clinical practice.

Methods: We conducted a comprehensive literature review focusing on the use of TEAS in the prevention of POCD during surgical anesthesia.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a pathologically heterogeneous disease making it a challenge to develop effective treatments. Emerging evidence suggests that there are pathological differences between women and men with AD. More biomarkers are needed to enhance sex-specific precision medicine in AD.

View Article and Find Full Text PDF

SGLT-2 inhibitors (SGLT-2i) and GLP-1 receptor agonists (GLP-1RA) have demonstrated nephro- and cardioprotective effects, but their neuroprotective properties, especially concerning stroke severity, and mechanisms are not unambiguous. We aimed to study the influence of SGLT-2i with different selectivity and GLP-1RA on brain damage volume and neurological status in non-diabetic and diabetic rats and to investigate the underlying mechanisms. Non-diabetic rats were divided into five groups (n = 10 each) and received empagliflozin, canagliflozin, or dulaglutide as study drugs and metformin as comparison drug.

View Article and Find Full Text PDF

Neurological Biomarker Profiles in Royal Canadian Air Force (RCAF) Pilots and Aircrew.

Brain Sci

December 2024

Canadian Forces Environmental Medicine Establishment, Toronto, ON M3K 2C9, Canada.

Background/objectives: Military aviators can be exposed to extreme physiological stressors, including decompression stress, G-forces, as well as intermittent hypoxia and/or hyperoxia, which may contribute to neurobiological dysfunction/damage. This study aimed to investigate the levels of neurological biomarkers in military aviators to assess the potential risk of long-term brain injury and neurodegeneration.

Methods: This cross-sectional study involved 48 Canadian Armed Forces (CAF) aviators and 48 non-aviator CAF controls.

View Article and Find Full Text PDF

Plasma brain-related biomarkers and potential therapeutic targets in pediatric ECMO.

Neurotherapeutics

January 2025

Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA. Electronic address:

Extracorporeal membrane oxygenation (ECMO) is a technique used to support severe cardiopulmonary failure. Its potential life-saving benefits are tempered by the significant risk for acute brain injury (ABI), from both primary pathophysiologic factors and ECMO-related complications through central nervous system cellular injury, blood-brain barrier dysfunction (BBB), systemic inflammation and neuroinflammation, and coagulopathy. Plasma biomarkers are an emerging tool used to stratify risk for and diagnose ABI, and prognosticate neurofunctional outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!