The effect of potential differentiation-inducing agent N-methylformamide on radiation response of murine normal and tumor cells (Lewis lung carcinoma, hematopoietic tissue and jejunum epithelial stem cells) was studied. The agent reduced or not altered radiation damage of tumor and epithelial cells in mice receiving NMF before irradiation. Sensitization to radiation was observed in endogenous spleen colony forming hemopoietic stem cells. When the agent was injected 15 min before irradiation the sensitizing effect was less pronounced. The highest effect was observed when agent was injected 24 h after irradiation of animals.

Download full-text PDF

Source

Publication Analysis

Top Keywords

normal tumor
8
stem cells
8
agent injected
8
modification radiation
4
radiation reaction
4
reaction normal
4
tumor tissues
4
tissues mice
4
mice induced
4
induced n-methylformamide]
4

Similar Publications

Background: The combination of local therapy with lenvatinib and programmed cell death protein-1 (PD-1) inhibitors represents an emerging treatment paradigm for unresectable hepatocellular carcinoma (uHCC). Our study sought to investigate the interrelationship between gut microbiota and intratumoral microbiota in the context of triple therapy, with a view to identifying potential biological markers.

Methods: The gut microbial community profiles of patients with primary untreated hepatocellular carcinoma (HCC) and those treated with local therapy combined with lenvatinib and PD-1 inhibitors were analyzed by 16S rRNA gene amplicon sequencing.

View Article and Find Full Text PDF

The sine oculis homeobox homolog (SIX) family, a group of transcription factors characterized by a conserved DNA-binding homology domain, plays a critical role in orchestrating embryonic development and organogenesis across various organisms, including humans. Comprising six distinct members, from to , each member contributes uniquely to the development and differentiation of diverse tissues and organs, underscoring the versatility of the SIX family. Dysregulation or mutations in genes have been implicated in a spectrum of developmental disorders, as well as in tumor initiation and progression, highlighting their pivotal role in maintaining normal developmental trajectories and cellular functions.

View Article and Find Full Text PDF

Disentangling protein metabolic costs in human cells and tissues.

PNAS Nexus

January 2025

Logic of Genomic Systems Laboratory (CNB-CSIC), Madrid E-28049, Spain.

While more data are becoming available on gene activity at different levels of biological organization, our understanding of the underlying biology remains incomplete. Here, we introduce a metabolic efficiency framework that considers highly expressed proteins (HEPs), their length, and biosynthetic costs in terms of the amino acids (AAs) they contain to address the observed balance of expression costs in cells, tissues, and cancer transformation. Notably, the combined set of HEPs in either cells or tissues shows an abundance of large and costly proteins, yet tissues compensate this with short HEPs comprised of economical AAs, indicating a stronger tendency toward mitigating costs.

View Article and Find Full Text PDF

Depression-related innate immune genes and pan-cancer gene analysis and validation.

Front Genet

January 2025

Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Ministry of Education, Collaborative Innovation Center of Hebei Province for Mechanism, Diagnosis and Treatment of Neuropsychiatric Diseases, Hebei Medical University, Shijiazhuang, Hebei, China.

Background: Depression, a prevalent chronic mental disorder, presents complexities and treatment challenges that drive researchers to seek new, precise therapeutic targets. Additionally, the potential connection between depression and cancer has garnered significant attention.

Methods: This study analyzed depression-related gene expression data from the GEO database.

View Article and Find Full Text PDF

Characterization of tumor epigenetic aberrations is integral to understanding the mechanisms of tumorigenesis and provide diagnostic, prognostic, and predictive information of high clinical relevance. Among the different tumor-associated epigenetic signatures, 5 methyl-cytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are the two most well-characterized DNA methylation alterations linked to cancer pathogenesis. 5hmC has a tissue-specific distribution and its abundance is subjected to changes in tumor DNA, making it a promising biomarker.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!