The degradation of troponin (Tn) subunits by calpain was studied by incubating either isolated cardiac Tns or myocardial cryosections with two different calpain isoenzymes isolated from rat skeletal muscle. Western-blot analysis with monoclonal antibodies against TnI and TnT showed that mu-calpain was at least ten times more active than m-calpain in degrading TnI and TnT both in vitro and in situ. TnC was completely resistant to both proteinase forms. Phosphorylation by cyclic AMP-dependent protein kinase (PKA) isolated from rat skeletal muscle reduced the sensitivity of TnI to degradation. This effect in combination with an increased efficiency of the endogenous inhibitor [Salamino, De Tullio, Michetti, Mengotti, Melloni and Pontremoli (1994) Biochem. Biophys. Res. Commun. 199, 1326-1332] probably reduces the proteolytic activity of calpain in cells on PKA stimulation. Conversely, phosphorylation by protein kinase C (PKC) resulted in a twofold increase in the degradation of TnI. Degradation by m-calpain was not modified by Tn phosphorylation. The different sensitivity to mu-calpain might be related to changes in TnI oligomeric structure. Indeed, on PKC phosphorylation, the apparent molecular mass of TnI calculated from the distribution coefficient of Tn complex in Sephadex G-100 matrix was reduced from 90 to 30 kDa suggesting dissociation of the Tn complex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1136842PMC
http://dx.doi.org/10.1042/bj3080057DOI Listing

Publication Analysis

Top Keywords

degradation troponin
8
isolated rat
8
rat skeletal
8
skeletal muscle
8
tni tnt
8
protein kinase
8
tni degradation
8
tni
6
phosphorylation
5
specific degradation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!