Inhibition of bone resorption in vitro by selective inhibitors of gelatinase and collagenase.

Biochem J

Cell and Molecular Biology Department, Strangeways Research Laboratory, Worts Causeway, Cambridge, U.K.

Published: May 1995

Two low-molecular-mass inhibitors of matrix metalloproteinases (MMPs), CT1166, a concentration-dependent selective inhibitor of gelatinases A and B, and Ro 31-7467, a concentration-dependent selective inhibitor of collagenase, were examined for their effects on bone resorption and type-I collagenolysis. The test systems consisted of measuring (1) the release of [3H]proline from prelabelled mouse calvarial explants; (2) the release of 14C from prelabelled type-I collagen films by mouse calvarial osteoblasts; and (3) lacunar resorption by isolated rat osteoclasts cultured on ivory slices. In 24 h cultures, CT1166 and Ro 31-7467 inhibited both interleukin-1 alpha- (IL-1 alpha; 10(-10) M) and 1,25-dihydroxyvitamin D3 (10(-8) M)-stimulated bone resorption in cultured neonatal mouse calvariae at concentration selective for the inhibition of gelatinase (10(-9) M for CT1166) and collagenase (10(-8) M for Ro 31-7467) respectively. For each compound the inhibition was dose-dependent, reversible, and complete at a 10(-7) M concentration. However, CT1166 (10(-9) M) and Ro 31-7467 (10(-8) M) in combination were required to completely abolish IL-1 alpha-stimulated bone resorption in mouse calvariae throughout a 96 h culture period. Neither of the inhibitors affected protein synthesis, DNA synthesis nor the IL-1 alpha-stimulated secretion of the lysosomal enzyme, beta-glucuronidase. Both CT1166 and Ro 31-7467 partially inhibited IL-1 alpha-stimulated lacunar resorption by isolated osteoclasts, but were without effect on unstimulated lacunar resorption. Rodent osteoclasts produced collagenase and gelatinases-A and -B activity. In contrast the substrate used to assess osteoclast lacunar resorption contained no detectable collagenase or gelatinase activity. Both compounds dose-dependently inhibited 1,25-dihydroxyvitamin D3 (10(-8) M)-stimulated degradation of type-I collagen by mouse calvarial osteoblasts; however, complete inhibition of collagenolysis was only achieved at concentrations at which CT1166 and Ro 31-7467 act as general MMP inhibitors. This study demonstrates that collagenase and gelatinases A and/or B participate in bone resorption. While these MMPs may be primarily involved in osteoid removal, we conclude that they may also be released by osteoclasts, where they participate in bone collagen degradation within the resorption lacunae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1136859PMC
http://dx.doi.org/10.1042/bj3080167DOI Listing

Publication Analysis

Top Keywords

bone resorption
20
lacunar resorption
16
mouse calvarial
12
ct1166 31-7467
12
il-1 alpha-stimulated
12
resorption
10
concentration-dependent selective
8
selective inhibitor
8
type-i collagen
8
calvarial osteoblasts
8

Similar Publications

Purpose Of Review: The purpose of this review is to summarize the current understanding of cell-autonomous innate immune pathways that contribute to bone homeostasis and disease.

Recent Findings: Germ-line encoded pattern recognition receptors (PRRs) are the first line of defense against danger and infections. In the bone microenvironment, PRRs and downstream signaling pathways, that mount immune defense, interface intimately with the core cellular processes in bone cells to alter bone formation and resorption.

View Article and Find Full Text PDF

Biomimetic Extracellular Vesicles Containing Biominerals for Targeted Osteoporosis Therapy.

ACS Appl Mater Interfaces

January 2025

Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, People's Republic of China.

Osteoporosis (OP) is a systemic skeletal disorder characterized by decreased bone mineral density and a heightened risk of fractures. Therapies for OP have primarily focused on balancing bone formation and bone resorption, but enhancing the remineralization of osteoporotic bone is also a key strategy for effective repair. Recent insights into biomineralization mechanisms have highlighted the essential role of mineral-containing extracellular vesicles (EVs) secreted by osteoblasts in promoting bone marrow mesenchymal stromal/stem cell (BMSC) differentiation and initiating matrix mineralization.

View Article and Find Full Text PDF

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease which afflicts about nearly 1% of global population. RA results in synovitis and cartilage/bone damage, even disability which aggravates the health burden. Many drugs are used to relieve RA, such as glucocorticoids (GCs), non-steroidal anti-inflammatory drugs (NSAIDs), and disease-modifying anti-rheumatic drugs (DMARDs) in the clinical treatment.

View Article and Find Full Text PDF

[Influencing fracture healing by specific osteoporosis medications].

Z Rheumatol

January 2025

Institut für Muskuloskelettale Medizin, LMU Klinikum, LMU München, München, Deutschland.

Background: Osteoporosis is a widespread disease defined by a reduction in bone mass and structure, thereby increasing the risk of fragility fractures. Treatment typically involves specific medications, which either inhibit bone resorption (antiresorptive) or stimulate bone formation (anabolic) and may potentially influence the healing of osteoporotic fractures. On the other hand, metabolic disorders, immune system dysfunctions or circulatory problems can impair fracture healing.

View Article and Find Full Text PDF

Although the toxic effect of Sedentary behavior (SED) on bone health has been demonstrated in the previous study, the underlying mechanisms of SED, or break SED to bone health remain unclear. In this study, we aim to investigate the effects of sedentary behavior (SED) on bone health, as well as the potential favor effects of moderate to vigorous physical activity (MVPA) and periodic interruptions of SED. To simulate SED, we used small Plexiglas cages (20.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!