Mechanical regulation of cardiac myofibrillar structure.

Ann N Y Acad Sci

Department of Developmental Biology and Anatomy, University of South Carolina School of Medicine, Columbia 29208, USA.

Published: March 1995

The excitation-contraction coupling cycle (ECC) consists of a complex cascade of electrochemical and mechanical events; however, the relative contributions of these different processes in the regulation of cardiac myofibrillar structure are not well understood. There is extensive evidence to suggest that the mechanical aspects of the ECC play a crucial role in controlling the availability of contractile proteins for myofibrillar assembly. To examine if these physical forces might also serve to stabilize the structure of preexisting myofibrils, beating and nonbeating cultures of neonatal cardiac myocytes (NCM) were subjected to a 5% static stretch. Contractile arrest was achieved by treating NCM with 12 microM nifedipine, which resulted in immediate and sustained contractile arrest and initiated the evolution of marked myofibrillar abnormalities within 24 hours. As judged by scanning confocal and transmission electron microscopic examination, an external load appears to partially stabilize myofibrillar structure in nonbeating NCM. These results suggest that the maintenance of myofibrillar structure may be highly dependent upon the mechanical aspects of ECC.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1749-6632.1995.tb17416.xDOI Listing

Publication Analysis

Top Keywords

myofibrillar structure
16
regulation cardiac
8
cardiac myofibrillar
8
mechanical aspects
8
aspects ecc
8
contractile arrest
8
myofibrillar
6
structure
5
mechanical
4
mechanical regulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!