Niemann-Pick disease type C (NPC) is an autosomal recessive disease, belonging to a clinically heterogeneous group of lipid storage diseases, distinguished by a unique error in cellular trafficking of exogenous cholesterol, associated with lysosomal accumulation of unesterified cholesterol. Unlike Niemann-Pick disease types A and B, there is no primary genetic defect in sphingomyelinase in NPC. During the routine neuropathological study of NPC patients, we found neurofibrillary tangles (NFT) in a series of cases with a slowly progressive chronic course. These were not associated with beta-amyloid deposits. The NFT were most frequent in the orbital gyrus, cingulate gyrus and entorhinal region of the cerebral cortex, but were also frequently found in the basal ganglia, thalamus and hypothalamus. In one of the most severely affected case, the NFT were even found in the neurons in the inferior olivary nucleus and in the spinal cord. The NFT were immunostained with Alz 50, and consisted of paired helical filaments. The distribution of the neurons bearing the NFT was generally similar to that of the swollen storage neurons, and storage neurons often contained NFT in their perikarya and/or in the meganeurites. However, neurons with NFT could be noted without swollen perikarya. The coexistence of neuronal storage and NFT in NPC without amyloid deposits suggests that perturbed cholesterol metabolism and/or lysosomal membrane trafficking may play a role in the formation of NFT, and that amyloid deposits are not necessarily the prerequisite for NFT formation. The results of our study also suggest that NFT formation may be a rather nonspecific cellular reaction of neurons to certain slowly progressive metabolic perturbations of an as yet undefined nature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00309338 | DOI Listing |
Biochim Biophys Acta Mol Cell Res
January 2025
School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia. Electronic address:
Cholesterol is an essential lipid that ensures the functional integrity of mammalian cells. Most cells acquire cholesterol via endocytosis of low-density lipoproteins (LDL). Upon reaching late endosomes/lysosomes (LE/Lys), incoming ligands, including LDL-derived cholesterol, are distributed to other organelles.
View Article and Find Full Text PDFBrain Dev
January 2025
Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
Nat Commun
January 2025
State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.
Niemann-Pick disease type C protein 1 (NPC1), classically associated with cholesterol transport and viral entry, has an emerging role in cancer biology. Here, we demonstrate that knockout of Npc1 in hepatocytes attenuates hepatocellular carcinoma (HCC) progression in both DEN (diethylnitrosamine)-CCl induced and MYC-driven HCC mouse models. Mechanistically, NPC1 significantly promotes HCC progression by modulating the TGF-β pathway, independent of its traditional role in cholesterol transport.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Observational studies have shown that the risk of developing herpes zoster (HZ) increases with the use of statins. However, there are many confounding factors in observational studies. Therefore, our Mendelian randomization (MR) study aimed to explore the causal role of lipids in HZ and to assess the causal impact of lipid-lowering drug targets on HZ risk.
View Article and Find Full Text PDFSci Rep
January 2025
MSD R&D Innovation Centre, 120 Moorgate, London, EC2M 6UR, UK.
Dysfunction of the endo-lysosomal intracellular Cholesterol transporter 2 protein (NPC2) leads to the onset of Niemann-Pick Disease Type C (NPC), a lysosomal storage disorder. Metabolic and homeostatic mechanisms are disrupted in lysosomal storage disorders (LSDs) hence we characterized a cellular model of NPC2 knock out, to assess alterations in organellar function and inter-organellar crosstalk between mitochondria and lysosomes. We performed characterization of lipid alterations and confirmed altered lysosomal morphology, but no overt changes in oxidative stress markers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!