Calcium influx into cultured retinal amacrine cells is followed by a small, slow, inward current that we show here results from the operation of electrogenic Na-Ca exchange. The activity of the exchanger is shown to correlate with the magnitude of the Ca2+ load and to depend on both the Ca2+ and Na+ gradients. Li+ is unable to substitute for Na+ and in the absence of Na+, slow tail currents are almost entirely suppressed. A rapid change in [K+]o does not affect the activity of the exchanger, suggesting that only Na+ and Ca2+ are transported. The ratio of charge entering as Ca2+ current to the charge entering as exchange current is highly variable between cells. We suggest that variability results from a variable fraction of Ca2+ load, we estimate typically 40%, being removed by a process other than Na-Ca exchange. This process is likely to involve internal buffering or sequestration since inhibition of the plasmalemmal Ca(2+)-ATPase does not increase the fraction of Ca2+ expelled by the exchanger. Ca2+ loading performed in the absence of Na+o generates smaller exchange charge the longer the delay in returning Na+o to the neuron. About 30% of exchange charge is lost for a delay of 1 sec.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6578231PMC
http://dx.doi.org/10.1523/JNEUROSCI.15-05-03612.1995DOI Listing

Publication Analysis

Top Keywords

na-ca exchange
12
electrogenic na-ca
8
ca2+
8
retinal amacrine
8
amacrine cells
8
activity exchanger
8
ca2+ load
8
charge entering
8
fraction ca2+
8
exchange charge
8

Similar Publications

The inhibition of SLC8A1 promotes Ca-dependent cell death in Gastric Cancer.

Biomed Pharmacother

December 2024

Department of Biology, University of Naples Federico II, Naples, Italy; Biogem, Istituto di Biologia e Genetica Molecolare, Ariano Irpino, AV, Italy.

Intracellular Ca homeostasis dysregulation, through the modulation of calcium permeable ion channels and transporters, is gaining attention in cancer research as an apoptosis evasion mechanism. Recently, we highlighted a prognostic role for several calcium permeable channels. Among them, here, we focused on the plasma membrane bidirectional Na/Ca exchanger SLC8A1.

View Article and Find Full Text PDF

To explore the changes in groundwater hydrochemistry and its source influence in the low water level period of the southern oasis area of Gaochang District, Turpan City before and after the management of groundwater overexploitation, based on 12 groups of water samples in 2016 (three groups of unconfined water, nine groups of confined water) and 18 groups of water samples in 2023 (five groups of unconfined water, thirteen groups of confined water), mathematical statistics, hydrochemical diagraph, hydrogen and oxygen isotope means, and an absolute principle component-multiple linear regression (APCS-MLR) model were used to analyze the changes and sources of groundwater hydrochemistry. The results showed that due to the dynamic conditions of groundwater, the dominant cation changed from Na to Ca, and the anion changed from HCO to SO. The dominant cation of confined water changed from Ca to Na, and the dominant anion remained unchanged as SO.

View Article and Find Full Text PDF

Introduction: Intracellular Ca signalling regulates membrane permeabilities, enzyme activity, and gene transcription amongst other functions. Large transmembrane Ca electrochemical gradients and low diffusibility between cell compartments potentially generate short-lived, localised, high-[Ca] microdomains. The highest concentration domains likely form between closely apposed membranes, as at amphibian skeletal muscle transverse tubule-sarcoplasmic reticular (T-SR, triad) junctions.

View Article and Find Full Text PDF

Regulation of SR and mitochondrial Ca signaling by L-type Ca channels and Na/Ca exchanger in hiPSC-CMs.

Cell Calcium

December 2024

Cardiac Signaling Center of USC, MUSC and Clemson University, 68 President St BEB 306, Charleston, SC 29425, USA. Electronic address:

Rationale & Methods: While signaling of cardiac SR by surface membrane proteins (I & I) is well studied, the regulation of mitochondrial Ca by plasmalemmal proteins remains less explored. Here we have examined the signaling of mitochondria and SR by surface-membrane calcium-transporting proteins, using genetically engineered targeted fluorescent probes, mito-GCamP6 and R-CEPIA1er.

Results: In voltage-clamped and TIRF-imaged cardiomyocytes, low Na induced SR Ca release was suppressed by short pre-exposures to ∼100 nM FCCP, suggesting mitochondrial Ca contribution to low Na triggered SR Carelease.

View Article and Find Full Text PDF

Na/Ca exchangers (NCXs) transport Ca across the plasma membrane in exchange for Na and play a vital role in maintaining cellular Ca homeostasis. Our previous structural study of human cardiac NCX1 (HsNCX1) reveals the overall architecture of the eukaryotic exchanger and the formation of the inactivation assembly by the intracellular regulatory domain that underlies the cytosolic Na-dependent inactivation and Ca activation of NCX1. Here we present the cryo-EM structures of HsNCX1 in complex with a physiological activator phosphatidylinositol 4,5-bisphosphate (PIP), or pharmacological inhibitor SEA0400 that enhances the inactivation of the exchanger.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!