The effects of the polypeptide Decapeptyl (a gonadotropin-releasing hormone (GnRH) agonist analogue) and of transforming growth factor-alpha (TGF-alpha), on estrone sulfate-sulfatase activities in the homogenates of various breast cancer cell lines were studied in the presence of heparin. In hormone-dependent MCF-7 breast cancer cells, Decapeptyl can inhibit sulfatase activity, and this effect is significantly augmented in the presence of heparin. In the other hormone-dependent T-47D breast cancer cell line, the decrease of sulfatase activity was only significant when Decapeptyl was associated with heparin. No significant effect on sulfatase activity elicited by heparin, Decapeptyl or a mixture of both was found in the hormone-independent MDA-MB-231 breast cancer cells. TGF-alpha stimulates sulfatase activity in the MDA-MB-231 cells but has no effect in the MCF-7 cells; in contrast, TGF-alpha combined with heparin provokes a decrease of the sulfatase activity in both cell lines. It is concluded that the sulfatase activity in some types of breast cancer cell can be inhibited by heparin combined with the polypeptides Decapeptyl or TGF-alpha.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0960-0760(95)00004-j | DOI Listing |
J Agric Food Chem
January 2025
Faculty of Chemistry, Biotechnology, and Food Science, NMBU Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway.
Carrageenans are sulfated polysaccharides found in the cell wall of certain red seaweeds. They are widely used in the food industry for their gelling and stabilizing properties. In nature, carrageenans undergo enzymatic modification and degradation by marine organisms.
View Article and Find Full Text PDFCommun Med (Lond)
January 2025
Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA.
Background: Multiple sulfatase deficiency (MSD) is an exceptionally rare neurodegenerative disorder due to the absence or deficiency of 17 known cellular sulfatases. The activation of all these cellular sulfatases is dependent on the presence of the formylglycine-generating enzyme, which is encoded by the SUMF1 gene. Disease-causing homozygous or compound heterozygous variants in SUMF1 result in MSD.
View Article and Find Full Text PDFJ Appl Genet
January 2025
Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland.
Multiple sulfatase deficiency (MSD) is an ultra-rare lysosomal disease caused by defective activation of cellular sulfatases comprising clinical features of mucopolysaccharidoses, sphingolipidoses, and other sulfatase deficiencies. We present a case of an infant with feeding difficulties related to autism spectrum disorder (ASD) who was diagnosed at 10 months of age with MSD by next-generation sequencing (NGS). Biochemical results obtained in dried blood spot (DBS) samples were inconsistent and not suggesting MSD in the light of identified pathogenic SUMF1 variants.
View Article and Find Full Text PDFGen Comp Endocrinol
January 2025
Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.
Cytochrome P450 17A1 (CYP17A1) catalyzes two enzymatic reactions in the biosynthesis of dehydroepiandrosterone (DHEA) from pregnenolone. In pregnant humans, the adrenal gland is responsible for DHEA biosynthesis, which is then sulfated by SULT2A1 and released into the bloodstream. This sulfated DHEA is subsequently taken up by the placenta and deconjugated to serve as a precursor for estrogen biosynthesis.
View Article and Find Full Text PDFAnticancer Res
January 2025
Faculty of Pharmacy, Iryo Sosei University, Fukushima, Japan.
Background/aim: Breast cancer is mostly affected by estrogen, which promotes proliferation, tumorigenesis, and cancer progression. Estrogen sulfotransferase (SULT1E1) catalyzes sulfation to inactivate estrogens, whereas steroid sulfatase (STS) catalyzes estrogen sulfate hydrolysis to activate estrogens in breast cancer cells. Three major organosulfur compounds in garlic (Allium sativum L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!