Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent investigations demonstrated that administration of 1-aminobenzotriazole (ABT) to rats caused adrenal gland enlargement. Studies were done to pursue the mechanism(s) involved. Preliminary experiments revealed that the adrenal enlargement caused by ABT was associated with a decline in plasma corticosterone concentrations, suggesting inhibition of adrenal steroidogenesis. Indeed, a single injection of ABT (25 or 50 mg/kg body weight) to rats caused concentration-dependent declines (60-80%) in adrenal mitochondrial and microsomal cytochrome P450 (P450) concentrations. The decreases in adrenal P450 levels exceeded those in hepatic microsomes. Accompanying the declines in adrenal P450 concentrations were decreases in steroid hydroxylase activities. Mitochondrial 11 beta-hydroxylase and cholesterol side-chain cleavage activities and microsomal 21-hydroxylase activity were diminished markedly (60-90%) by ABT treatment. In contrast, activity of adrenal 3 beta-hydroxysteroid dehydrogenase-isomerase was not affected by ABT, indicating specificity for P450-dependent reactions. Incubation of adrenal microsomes or mitochondria in vitro with ABT plus an NADPH-generating system had no effect on P450 concentrations or on steroid hydroxylase activities. Similar incubations with hepatic microsomes caused declines in P450 levels and in the rates of P450-mediated xenobiotic metabolism. The results demonstrate that ABT is a potent inhibitor of adrenal steroid hydroxylases in vivo, but the in vitro studies indicate that the mechanism of action differs from that on other P450 isozymes. The absence of inhibitor effects in vitro suggests that an extra-adrenal metabolite of ABT is responsible for the in vivo inactivation of steroidogenic enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0006-2952(95)98501-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!