The interaction of microdispersions of crosslinked polyelectrolytes with ions of biologically active substances has been studied by physicochemical methods. The processes of ion exchange and physical adsorption, underlying the interaction, can promote flocculation. Of particular importance is the selective flocculation of dipolar ions of biologically active substances.

Download full-text PDF

Source

Publication Analysis

Top Keywords

crosslinked polyelectrolytes
8
ions biologically
8
biologically active
8
active substances
8
[use microdispersed
4
microdispersed forms
4
forms crosslinked
4
polyelectrolytes biotechnology]
4
biotechnology] interaction
4
interaction microdispersions
4

Similar Publications

Competitive displacement of lipoprotein lipase from heparan sulfate is orchestrated by a disordered acidic cluster in GPIHBP1.

J Lipid Res

January 2025

Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Movement of lipoprotein lipase (LPL) from myocytes or adipocytes to the capillary lumen is essential for intravascular lipolysis and plasma triglyceride homeostasis-low LPL activity in the capillary lumen causes hypertriglyceridemia. The trans-endothelial transport of LPL depends on ionic interactions with GPIHBP1's intrinsically disordered N-terminal tail, which harbors two acidic clusters at positions 5-12 and 19-30. This polyanionic tail provides a molecular switch that controls LPL detachment from heparan sulfate proteoglycans (HSPGs) by competitive displacement.

View Article and Find Full Text PDF

Manipulating Toughness and Microstructure in Polyelectrolyte Complex Hydrogels with Competitive Surfactant Micelles.

Langmuir

January 2025

Key Laboratory of Functional Polymer Materials of Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, China.

Polyelectrolyte complex (PEC) hydrogels provide a promising strategy to develop a class of physically cross-linked networks characterized by exceptional toughness and self-healing properties. However, the precise control of the microstructure and the enhancement of mechanical properties still pose challenges in the field of PEC hydrogels. Herein, we propose a strategy to manipulate the structure of PEC with competitively charged surfactant micelles, leveraging the spatially confined surface charge and excluded volume effects to overcome coacervation issues associated with the PEC, thus achieving a simple one-step preparation of macroscopically uniform and tough PEC hydrogels.

View Article and Find Full Text PDF

Polyelectrolyte complex nanoparticles (PECNPs) often fully dissociate into individual polycations (PC) and polyanions (PA) at high salinities. Herein, we introduce a novel type of colloidally stable PECNP in which the PC is cross-linked, in this case branched polyethylenimine (PEI) to limit this dissociation, even in solutions up to 5.2 M NaCl or 5.

View Article and Find Full Text PDF

Self-assembly of proteins and polyelectrolytes in aqueous solutions is a promising approach for the development of advanced biotherapeutics and engineering efficient biotechnological processes. Synthetic polyions containing sterically repulsive ethylene oxide moieties are especially attractive as protein modifying agents, as they can potentially induce a PEGylation-like stabilizing effect without the need for complex covalent binding reactions. In this study, we investigated the protein-binding properties of anionic polyelectrolytes based on an inorganic polyphosphazene backbone, with ethylene oxide groups incorporated into both grafted and linear macromolecular topologies.

View Article and Find Full Text PDF

Green synthesis of self-assembly, self-healing, and injectable polyelectrolyte complex hydrogels using chitosan, sulphated polysaccharides, hydrolyzed collagen and nanocellulose.

Int J Biol Macromol

December 2024

Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia B3J 1B6, Canada. Electronic address:

This study introduces a green method for preparing self-assembly hydrogels via polyelectrolyte complex (PEC) coacervation using chitosan, sulphated polysaccharides (chondroitin sulphate or fucoidan), and hydrolyzed collagen, followed by treatments, such as centrifugation, nanocellulose incorporation, algal fucoidan substitution, freezing-thawing, saline solution addition, and dialysis. Chitosan alters the non-gelling characteristics of chondroitin sulphate, fucoidan, and hydrolyzed collagen, initiating quick gelling. This study compared the effects of biopolymer concentrations, pHs, and treatments on hydrogel properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!