Four unlinked fatty acid activation (FAA) genes encoding acyl-CoA synthetases have been identified in Saccharomyces cerevisiae and characterized by noting the phenotypes of isogenic strains containing all possible combinations of faa null alleles. None of these genes is required for vegetative growth when acyl-CoA production by the fatty acid synthetase (Fas) complex is active. When Fas is inhibited by cerulenin, exponentially growing cells are not viable on media containing a fermentable carbon source unless supplemented with fatty acids such as myristate, palmitate, or oleate. The functionally interchangeable FAA1 and FAA4 genes are responsible for activation of these imported fatty acids. Analysis of lysates prepared from isogenic FAA1FAA4 and faa1 delta faa4 delta strains indicated that Faa1p and Faa4p together account for 99% of total cellular myristoyl-CoA and palmitoyl-CoA synthetase activities. Genetic complementation studies revealed that rat liver acyl-CoA synthetase (RLACS) rescues the viability of faa1 delta faa4 delta cells in media containing a fermentable carbon source, myristate or palmitate, plus cerulenin. Rescue is greater at 37 degrees C compared with 24 degrees C, paralleling the temperature-dependent changes in RLACS activity in vitro as well as the enzyme's ability to direct incorporation of tritiated myristate and palmitate into cellular phospholipids in vivo. Complementation by RLACS is blocked by treatment of cells with triacsin C (1-hydroxy-3-(E,E,E,2',4',7'- undecatrienylidine)triazene). Even though Faa1p, Faa4p, and RLACS are all able to activate imported myristate and palmitate in S. cerevisiae, the sensitivity of Faa4p and RLACS, but not Faa1p, to inhibition by triacsin C suggests that the rat liver enzyme is functionally more analogous to Faa4p than to Faa1p. Finally, an assessment of myristate and palmitate import into FAA1FAA4 and faa1 delta faa4 delta strains, with or without episomes that direct overexpression of Faa1p, Faa4p or RLACS, indicated that fatty acid uptake is not coupled to activation in S. cerevisiae.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.270.18.10861 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
The rising incidence of fungal infections, compounded by the emergence of severe antifungal resistance, has resulted in an urgent need for innovative antifungal therapies. We developed an antifungal protein-based formulation as a topical antifungal agent by combining an artificial lipidated chitin-binding domain of antifungal chitinase (LysM-lipid) with recently developed ionic liquid-in-oil microemulsion formulations (MEFs). Our findings demonstrated that the lipid moieties attached to LysM and the MEFs effectively disrupted the integrity of the stratum corneum in a mouse skin model, thereby enhancing the skin permeability of the LysM-lipids.
View Article and Find Full Text PDFMicrobiol Spectr
December 2024
Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Vaginitis is the most common problem afflicting women of childbearing age. However, the underlying etiological factors remain poorly understood, leading to recurrent vaginitis and constraining clinical management. Here, we explored whether the gut microbiota influences the risk of vaginitis by performing a two-sample Mendelian randomization analysis using the largest genome-wide association studies to date.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, SP, Brazil. Electronic address:
The unique fatty acid composition of BSF larvae oil makes it suitable for various applications, including use in animal feed, aquaculture, biodiesel production, biomaterials, and the food industry. Determination of BSF larvae composition usually requires analytical methods with chemicals, thus needing emerging techniques for fast characterization of its composition. In this study, Near Infrared Hyperspectral Imaging (NIR-HSI) (928 - 2524 nm) coupled with chemometrics was applied to predict the lipid content and fatty acid composition in intact black soldier fly (BSF) larvae.
View Article and Find Full Text PDFTrop Anim Health Prod
December 2024
Department of Food Engineering, Agriculture Faculty, Selçuk University, 42050, Konya, Türkiye.
This study examined the chemical composition, including moisture content, total fat, iodine value, melting point, saponification number, differential scanning calorimetry, fatty acid profiles, and color values (L*, a*, b*), in abdominal (A) and subcutaneous (S) fat of 15-week-old geese from three female varieties: Turkish (Lo), Linda (Li), and Mast (Ma). Results showed significantly higher moisture content in Lo-S compared to abdominal fats (P < 0.05), with consistent fat contents among goose varieties in abdominal fats.
View Article and Find Full Text PDFJ Anim Sci Technol
November 2024
Department of Animal Industry Convergence, Kangwon National University, Chuncheon 24341, Korea.
The objective of this experiment was to evaluate the physiochemical characteristics of three tertiary hybrids (crossbreeds) of pigs, with and without coffee supplementation. A total of fifty pigs of different mixed breeds Landrace × Yorkshire × Duroc (LYD), Yorkshire × Berkshire (YB), and Yorkshire × Woori (YW); 113.45 kg ± 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!