To analyze the effect of human T-cell leukemia virus type I (HTLV-I) on cellular gene expression and its relation to tumorigenesis, two lines of transgenic mice carrying the long terminal repeat (LTR)-env-pX-LTR regions of the HTLV-I genome were produced. The transgene was expressed in many organs, including the brain, salivary gland, spleen, thymus, skin, muscle, and mammary gland. We found that the expression of the c-fos and c-jun genes, but not of the lyn and c-myc genes, was augmented 2- to 20-fold in histologically normal skin and muscle of these mice. The augmentation was tissue specific, suggesting the involvement of a cellular factor in the transgene action. In these mice, a three to seven times higher incidence of tumors was seen as compared with the control mice. These tumors included mesenchymal tumors, such as fibrosarcoma, neurofibroma, and lipoma, and adenocarcinomas of the mammary gland, salivary gland, and lung. The c-fos and c-jun genes were also activated in these tumors. The possible roles of elevated c-fos and c-jun gene expression in tumorigensis are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF01702659 | DOI Listing |
Phytomedicine
January 2025
Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea. Electronic address:
Background: Inflammation is the body's innate reaction to foreign pathogens and serves as a self-regulating mechanism. However, the immune system can mistakenly target the body's own tissues, triggering unnecessary inflammation. For millennia, medicinal plants have been employed for the treatment of diseases.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China.
Pimpled eggs have defective shells, which severely impacts hatching rates and transportation safety. In this study, we constructed single-cell resolution transcriptomic and chromatin accessibility maps from uterine tissues of chickens using single-cell RNA sequencing (scRNA-seq) and single-cell ATAC sequencing (scATAC-seq). We identified 11 major cell types and characterized their marker genes, along with specific transcription factors (TFs) that determine cell fate.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Drive, Health Sciences Research Bldg E170, Atlanta, GA 30322, USA.
Background: Calcific aortic valve disease (CAVD) is a highly prevalent disease, especially in the elderly population, but there are no effective drug therapies other than aortic valve repair or replacement. CAVD develops preferentially on the fibrosa side, while the ventricularis side remains relatively spared through unknown mechanisms. We hypothesized that the fibrosa is prone to the disease due to side-dependent differences in transcriptomic patterns and cell phenotypes.
View Article and Find Full Text PDFCancer Diagn Progn
January 2025
Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
Background/aim: Significant transcription factors - including c-Fos (gene locus: 14q24.3) and c-Jun (gene locus: 1p32-p31) - regulate cell homeostasis preventing abnormal signal transduction to nucleus. Their over-activation seems to be associated with an aggressive phenotype in non-small cell lung carcinomas (NSCLCs).
View Article and Find Full Text PDFNat Commun
January 2025
Center for Research Informatics, The University of Chicago, Chicago, IL, USA.
The fallopian tube undergoes extensive molecular changes during the menstrual cycle and menopause. We use single-cell RNA and ATAC sequencing to construct a comprehensive cell atlas of healthy human fallopian tubes during the menstrual cycle and menopause. Our scRNA-seq comparison of 85,107 pre- and 46,111 post-menopausal fallopian tube cells reveals substantial shifts in cell type frequencies, gene expression, transcription factor activity, and cell-to-cell communications during menopause and menstrual cycle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!