To study the course of regional metabolite concentrations during early brain development, we measured in vivo metabolites [N-acetyl-aspartate (NAA), choline-containing compounds, and myoinositol (M-Ino)] in the precentral area of the cerebrum by short echo-time single volume proton magnetic resonance spectroscopy and compared in vivo established spectroscopic data with classic chromatographic data (HPLC) on age-corresponding autopsy tissue in different regions of the brain. In autopsy tissue, regional (frontal lobe, precentral area, basal ganglia, thalamus) and age-dependent differences of the concentration of creatine, NAA, and M-Ino were determined. In vivo measurement of NAA by proton magnetic resonance spectroscopy shows a significant increase of NAA by increasing postconceptional age. M-Ino shows a weak correlation and a nonsignificant decrease with increasing postconceptional age. Choline shows no age-dependent changes. Creatine concentrations measured by HPLC in different regions of the developing brain at autopsy showed an age-dependent increase that was identical for the left and right side and similar for the precentral area and frontal lobe and more pronounced for the basal ganglia and thalamus. Comparison of the results obtained by the two methods shows agreement for the age-dependent changes and the absolute concentration of M-Ino. NAA determined in autopsy tissue by HPLC is significantly lower than that measured in vivo by proton magnetic resonance spectroscopy. A comparison of the concentrations measured by HPLC in frontal lobe, basal ganglia, and thalamus with the results obtained from the precentral area showed significant regional differences in all measured metabolites. These results define important age-dependent changes detected with both methods and further indicate limitations of both methods that have to be considered when presenting absolute concentration values.

Download full-text PDF

Source
http://dx.doi.org/10.1203/00006450-199502000-00003DOI Listing

Publication Analysis

Top Keywords

proton magnetic
16
magnetic resonance
16
resonance spectroscopy
16
autopsy tissue
16
precentral area
16
frontal lobe
12
basal ganglia
12
ganglia thalamus
12
age-dependent changes
12
brain development
8

Similar Publications

Cellular metabolism is inextricably linked to transmembrane levels of proton (H), sodium (Na), and potassium (K) ions. Although reduced sodium-potassium pump (Na-K ATPase) activity in tumors directly disturbs transmembrane Na and K levels, this dysfunction is a result of upregulated aerobic glycolysis generating excessive cytosolic H (and lactate) which are extruded to acidify the interstitial space. These oncogene-directed metabolic changes, affecting intracellular Na and H, can be further exacerbated by upregulation of ion exchangers/transporters.

View Article and Find Full Text PDF

Multiple sclerosis (MS) falls within the spectrum of central nervous system (CNS) demyelinating diseases that may lead to permanent neurological disability. Fundamental to the diagnosis and clinical surveillance is magnetic resonance imaging (MRI) that allows for the identification of T2-hyperintensities associated with autoimmune injury that demonstrate distinct spatial distribution patterns. Here, we describe the clinical experience of a 31-year-old, right-handed, White man seen in consultation at The University of Texas Southwestern Medical Center in Dallas, Texas, following complaints of headaches that began after head trauma related to military service.

View Article and Find Full Text PDF

While MRI has become the imaging modality of choice for intracranial meningiomas, no radiologic reporting guidance exists to date that relies on a systematic collection of information relevant to the core medical disciplines involved in the management of these patients. To address this issue, a nationwide expert survey was conducted in Germany. A literature-based catalog of potential reporting elements for MRI examinations of meningioma patients was developed interdisciplinarily.

View Article and Find Full Text PDF

Quantitative abdominal magnetic resonance imaging (MRI) offers non-invasive, objective assessment of diseases in the liver, pancreas, and other organs and is increasingly being used in the pediatric population. Certain quantitative MRI techniques, such as liver proton density fat fraction (PDFF), R2* mapping, and MR elastography, are already in wide clinical use. Other techniques, such as liver T1 mapping and pancreas quantitative imaging methods, are emerging and show promise for enhancing diagnostic sensitivity and treatment monitoring.

View Article and Find Full Text PDF

Antioxidant and longevity inducing properties of coconut water on human dermal fibroblasts.

Heliyon

December 2024

Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.

Coconut water is a popular drink in tropical countries and worldwide due to its delicious taste, easy consumption and nutritionally rich properties. Our study aimed to identify bioactive compounds of coconut varieties and their antioxidant as well as longevity effects in 2 different groups of coconuts. These include the bleeding coconut varieties, which are currently most available in the market, namely the Ban Phaeo and Ratchaburi coconut varieties, and the traditional coconut varieties, including Kon-jib and Sampran coconut varieties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!