The objective of the present work was to study the interaction between the tendon elasticity, the muscle activation-loading dynamics, specific actions of the biarticular muscles, preloading and jumping performance during maximal vertical jumping. Six male expert jumpers participated in the study. They performed maximal vertical jumps with five different preloads. The kinematics and dynamics of the jumping movements were analysed from force plate and high speed film recordings. The amount of elastic energy stored in the tendons of the leg extensor muscles was calculated by a generalised tendon model, and the muscle coordination was analysed by surface EMG. The best jumping performances were achieved in the jumps with low preloads (counter movement jumps and drop jumps from 0.3 m). A considerable amount of the energy imposed on the legs by prestretch loading was stored in the tendons (26 +/- 3%), but the increased performance could not be explained by a contribution of elastic energy to the positive work performed during the push off. During the preloading, the involved muscles were activated at the onset of the loading. Slow prestretches at the onset of muscle activation under relatively low average stretch loads, as observed during counter movement jumps and drop jumps from 0.3 m, prevented excessive stretching of the muscle fibres in relation to the tendon length changes. This consequently conserved the potential of the muscle fibres to produce positive work during the following muscle-tendon shortening in concert with the release of the tendon strain energy. A significant increase in the activity of m. rectus femoris between jumps with and without prestretch indicated a pronounced action of m. rectus femoris in a transport of mechanical energy produced by the proximal monoarticular m. gluteus maximus at the hip to the knee and thereby enhanced the transformation of rotational joint work to translational work on the mass centre of the body. The changes in muscle activity were reflected in the net muscle powers. Vertical jumping is like most movements constrained by the intended direction of the movement. The movements of the body segments during the prestretches induced a forward rotation and during the take off, a backward rotation of the body. A reciprocal shift in the activities of the biarticular m. rectus femoris and m. semitendinosus indicated that these rotations were counteracted by changes in the direction of the resultant ground reaction vector controlled by these muscles.(ABSTRACT TRUNCATED AT 400 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1016/0021-9290(94)00062-9DOI Listing

Publication Analysis

Top Keywords

maximal vertical
12
vertical jumping
12
rectus femoris
12
performance maximal
8
jumping movements
8
elastic energy
8
stored tendons
8
counter movement
8
movement jumps
8
jumps drop
8

Similar Publications

Kinetics of recovery and normalization of running biomechanics following aerobic-based exercise-induced muscle damage in recreational male runners.

J Sci Med Sport

January 2025

Department of Health Promotion, School of Public Health, Faculty of Medical and Health Sciences, Sylvan Adams Sports Institute, Tel-Aviv University, Israel. Electronic address:

Objectives: The study aimed to examine the effects of exercise-induced muscle damage on running kinetics.

Design: Twenty-six adult recreational male runners performed 60 min of downhill running (-10 %) at 65 % of maximal heart rate. Running gait changes, systemic and localized muscle damage markers were assessed pre - and post-exercise induced muscle damage protocol.

View Article and Find Full Text PDF

ZnSb is widely recognized as a promising thermoelectric material in its bulk form, and a ZnSb bilayer was recently synthesized from the bulk. In this study, we designed a vertical van der Waals heterostructure consisting of a ZnSb bilayer and an h-BN monolayer to investigate its electronic, elastic, transport, and thermoelectric properties. Based on density functional theory, the results show that the formation of this heterostructure significantly enhances electron mobility and reduces the bandgap compared to the ZnSb bilayer, thereby increasing its power factor.

View Article and Find Full Text PDF

Vertical Movement of Head, Withers, and Pelvis of High-Level Dressage Horses Trotting in Hand vs. Being Ridden.

Animals (Basel)

January 2025

Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112-114, NL-3584 CM Utrecht, The Netherlands.

Prior to international competitions, dressage horses are evaluated for fitness to compete while trotting in hand on a firm surface. This study compares the kinematics of experienced dressage horses trotting under fitness-to-compete conditions vs. performing collected and extended trot when ridden on a sand-fiber arena surface.

View Article and Find Full Text PDF

Specific Physical Performances of Young Male Basketball Players in Palestine: An Assessment by Maturity Status.

Children (Basel)

January 2025

Research Laboratory, Exercise Physiology and Physiopathology: From Integrated to Molecular "Biology, Medicine and Health" (LR19ES09), Faculty of Medicine of Sousse, University of Sousse, Sousse 4000, Tunisia.

Objectives: There is a lack of studies that investigate the relationship between anthropometric profiles, biological maturity, and specific physical performances in young male basketball players. This study aimed to evaluate the development of anthropometric characteristics and physical performance across different age and maturity groups among male basketball players in Palestine, as well as to identify the anthropometric factors influencing physical performance within this population.

Methods: A total of one-hundred-fifty male basketball players, aged 12 to 16, participated in this study.

View Article and Find Full Text PDF

Objective: This study explores a hybrid approach to maternal-fetal care for gestational diabetes (GD), integrating virtual visits seamlessly with in-clinic assessments. We assessed the feasibility, time efficiency, patient satisfaction, and clinical outcomes to facilitate wider adoption of maternal-fetal telemedicine.

Methods: We conducted a 4-week prospective study involving 20 women with GD at ≥32 weeks of pregnancy, alternating between remote and in-clinic weekly visits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!