Glutamate is believed to be the major excitatory transmitter in the mammalian central nervous system. Keeping the extracellular concentration of glutamate low, the glutamate transporters are required for normal brain function. Arachidonic acid (AA) inhibits glutamate uptake in relatively intact preparations (cells, tissue slices, and synaptosomes (Rhoads, D.E., Ockner, R. K., Peterson, N. A., and Raghupathy, E. (1983) Biochemistry 22, 1965-1970 and Volterra, A., Trotti, D., Cassutti, P., Tromba, C., Salvaggio, A., Melcangi, R. C., and Racagni, G. (1992b) J. Neurochem. 59, 600-606). The present study demonstrates that the effect of AA occurs also in a reconstituted system, consisting of a purified glutamate transporter protein incorporated into artificial cell membranes (liposomes). The characteristics of the AA effect in this system and in intact cells are similar with regard to specificity, sensitivity, time course, changes in Vmax, and affinity. AA-ethyl ester is inactive, suggesting that the free carboxylic group is required for inhibitory activity. When incubated with proteoliposomes, AA (300 microM, 15 min) mostly partitions to the lipid phase (lipid/water about 95:5). However, uptake inhibition is abolished by rapid dilution (6.5-fold) of the incubation medium (water phase), a procedure that does not modify the amount of AA associated with lipids. On the contrary, inhibition remains sustained if the same dilution volume contains as little as 5 microM AA, a concentration inactive before saturation of liposome lipids with 300 microM AA. The same degree of inhibition (60%) is obtained by 5 microM AA following preincubation with the inactive AA-ethyl ester (300 microM) instead of AA. The lipids apparently inactivate AA by extracting it from the water phase. The results suggest that AA acts on the transporter from the water phase rather than via the membrane. This could be true for other proteins as well since gamma-aminobutyric acid uptake is similarly affected by AA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.270.17.9890 | DOI Listing |
Bioprocess Biosyst Eng
January 2025
Cell Culture Development, Biogen, 5000 Davis Drive, Research Triangle Park, NC, 27709, USA.
Membrane fouling is a common and complex challenge with cell culture perfusion process in biopharmaceutical manufacturing that can have detrimental effects on the process performance. In this study, we evaluated a method to calculate the hollow fiber membrane resistance at different time points for water and supernatant. In addition, the number of subvisible particles of < 200 nm.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Ahmadu Bello University, Zaria, Kaduna, Nigeria.
Background: Lead, a pervasive and toxic environmental pollutant, of particular concern is its impact as a trigger for neurodegenerative diseases. Phoenix dactylifera (date palm), has garnered attention due to its pharmacological properties: antioxidant and anti-inflammatory, attributed to its rich flavonoid content. This assessed the therapeutic potentials of n-butanol fraction of P.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Bioengineering, University of California, Los Angeles, CA, USA, Los Angeles, CA, USA.
Background: Alzheimer's disease (AD) is characterized by cognitive decline and increased seizure susceptibility due to brain damage and neural disruptions. This study examines the relationship between cognitive deterioration and seizure pathology in hAPP-J20 transgenic Alzheimer's mice, a model known for amyloid plaque deposition and heightened seizure activity.
Method: We observed hAPP-J20 mice aged 8 to 28 weeks using long-term wireless telemetry to assess hippocampal local field potential, sampled at 2 kHz.
Alzheimers Dement
December 2024
University of California Irvine, Irvine, CA, USA.
Background: Our goal is to identify conditions to produce structurally homogeneous and reproducible preparations of different polymorphic structures. Here we investigate the effect of several widely used methods for solubilizing Abeta on the subsequent aggregation process.
Method: Aliquots of HPLC-purified synthetic Aβ40 in originally lyophilized from acetonitrile/water (AcN) 50% v/v were dissolved in hexafluoroisopropanol (HFIP) 100%, AcN 50% v/v, NH4OH 2%, or 50 mM Phosphate buffer (PB), re-aliquoted and lyophilized.
J Chem Phys
January 2025
Division of Energy, Matter and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA.
Developing efficient path integral (PI) methods for atomistic simulations of vibrational spectra in heterogeneous condensed phases and interfaces has long been a challenging task. Here, we present the h-CMD method, short for hybrid centroid molecular dynamics, which combines the recently introduced fast quasi-CMD (f-QCMD) method with fast CMD (f-CMD). In this scheme, molecules that are believed to suffer more seriously from the curvature problem of CMD, e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!