Neurotoxicity of glucocorticoids in the primate brain.

Horm Behav

Wisconsin Regional Primate Research Center, School of Medicine, University of Wisconsin, Madison 53715, USA.

Published: December 1994

Severe and prolonged physical and psychological stress is known to cause brain damage; long-term torture victims in prison have later developed psychiatric disorders and cerebral cortical atrophy observed in CT scans (Jensen, Genefke, Hyldebrandt, Pedersen, Petersen, and Weile, 1982). In nonhuman primates, we observed degeneration and depletion of the hippocampal neurons in African green monkeys that had been severely abused by cagemates and died with complications of multiple gastric ulcers and adrenal cortical hyperplasia (Uno, Tarara, Else, Suleman and Sapolsky, 1989). In our previous studies the administration of dexamethasone (DEX) (5 mg/kg) to pregnant rhesus monkeys at 132 to 133 days of gestation induced degeneration and depletion of the hippocampal pyramidal and dentate granular neurons in the brains of 135-gestation-day fetuses, and these changes were retained in the brains of fetuses at near term, 165 days of gestation (Uno, Lohmiller, Thieme, Kemnitz, Engle, Roecker, and Farrell, 1990). We also found that implantation of a cortisol pellet in the vicinity of the hippocampus in adult vervet monkeys induced degeneration of the CA3 pyramidal neurons and their dendritic branches (Sapolsky, Uno, Rebert, and Finch, 1990). Thus, hippocampal pyramidal neurons containing a high concentration of glucocorticoid receptors appear to be highly vulnerable to either hypercortisolemia caused by severe stress or to exposure to exogenous glucocorticoids. To study the long-term postnatal sequelae of prenatal brain damage, eight rhesus monkeys were treated with either DEX (5 mg/kg), 5 animals, or vehicle, 3 animals, at 132 to 133 days of gestation. After natural birth, all animals lived with their mothers for 1 year. At 9 months of age, we found that DEX-treated animals had significantly high plasma cortisol at both base and post-stress (isolation) levels compared to age-matched vehicle-treated animals. Magnetic resonance images (MRI) of the brain at 20 months of age showed an approximately 30% reduction in size and segmental volumes of the hippocampus in DEX-treated compared to vehicle-treated animals. Measurements of whole brain volume by MRI showed no significant differences between DEX and vehicle groups. Prenatal administration of a potent glucocorticoid (DEX) induced an irreversible deficiency of the hippocampal neurons and high plasma cortisol at the circadian baseline and post-stress levels in juvenile rhesus monkeys. These results suggest that the hippocampus mediates negative feedback of cortisol release; a lack or deficiency of the hippocampal neurons attenuates this feedback resulting in hypercortisolemia.(ABSTRACT TRUNCATED AT 400 WORDS)

Download full-text PDF

Source
http://dx.doi.org/10.1006/hbeh.1994.1030DOI Listing

Publication Analysis

Top Keywords

hippocampal neurons
12
rhesus monkeys
12
days gestation
12
brain damage
8
degeneration depletion
8
depletion hippocampal
8
dex mg/kg
8
132 133
8
133 days
8
induced degeneration
8

Similar Publications

During spatial learning, subjects progressively adjust their navigation strategies as they acquire experience. The medial prefrontal cortex (mPFC) supports this operation, for which it may integrate information from distributed networks, such as the hippocampus (HPC) and the posterior parietal cortex (PPC). However, the mechanism underlying the prefrontal coordination with HPC and PPC during spatial learning is poorly understood.

View Article and Find Full Text PDF

The cell adhesion molecule Leucine-Rich Repeat Transmembrane neuronal protein 2 (LRRTM2) is crucial for synapse development and function. However, our understanding of its endogenous trafficking has been limited due to difficulties in manipulating its coding sequence (CDS) using standard genome editing techniques. Instead, we replaced the entire LRRTM2 CDS by adapting a two-guide CRISPR knock-in method, enabling complete control of LRRTM2.

View Article and Find Full Text PDF

Muscarinic cannabinoid suppression of excitation, a novel form of coincidence detection.

Pharmacol Res

January 2025

Gill Institute for Neuroscience; Dept. of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405. Electronic address:

Δ-tetrahydrocannabinol (THC), the chief psychoactive ingredient of cannabis, acts in the brain primarily via cannabinoid CB1 receptors. These receptors are implicated in several forms of synaptic plasticity - depolarization-induced suppression of excitation (DSE), metabotropic suppression of excitation (MSE), long term depression (LTD) and activation-dependent desensitization. Cultured autaptic hippocampal neurons express all of these, illustrating the rich functional and temporal heterogeneity of CB1 at a single set of synapses.

View Article and Find Full Text PDF

GABAergic Progenitor Cell Graft Rescues Cognitive Deficits in Fragile X Syndrome Mice.

Adv Sci (Weinh)

January 2025

Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.

Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder characterized by a range of clinical manifestations with no effective treatment strategy to date. Here, transplantation of GABAergic precursor cells from the medial ganglionic eminence (MGE) is demonstrated to significantly improve cognitive performance in Fmr1 knockout (KO) mice. Within the hippocampus of Fmr1-KO mice, MGE-derived cells from wild-type donor mice survive, migrate, differentiate into functionally mature interneurons, and form inhibitory synaptic connections with host pyramidal neurons.

View Article and Find Full Text PDF

Dose-Dependent Effect of a New Biotin Compound in Hippocampal Remyelination in Rats.

Mol Neurobiol

January 2025

Department of Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey.

Demyelination is commonly observed in neurodegenerative disorders, including multiple sclerosis (MS). Biotin supplementation is known to stabilize MS progression. To reduce the effective dose of biotin, we synthesized a new and superior form of biotin, a complex of magnesium ionically bound to biotin (MgB) and compared its dose-dependent effect with biotin alone after inducing demyelination using lysolecithin (LPC) in rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!