AI Article Synopsis

Article Abstract

A group of 28 healthy, white, male, light-to-moderate smokers, 21 to 35 years of age, were offered a financial inducement to abstain from smoking for 31 days. A matched control group of 11 smokers were paid to continue smoking during the same period. Nonspecific parameters of immune system function were monitored before and at various times after smoking abstinence. Abstinence increased natural killer cell cytotoxic activity but did not alter mitogen-induced T-lymphocyte proliferation as measured by responses to concanavalin A or phytohemagglutinin. Serum cortisol concentrations also decreased after smoking cessation; however, changes in immune function were not correlated with serum cortisol change, nor with indices of smoking such as plasma nicotine and cotinine levels. Responses to concanavalin A and phytohemagglutinin were positively correlated with change in self-reported alcohol ingestion during smoking abstinence. Results indicate that elevation in natural kill cell cytotoxic activity is detectable within 1 month of smoking cessation, even in light-to-moderate smokers. However, elevation in natural killer cell cytotoxic activity appears not to be directly related to cessation-induced reductions in plasma nicotine, cotinine, or circulating cortisol levels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0091-6749(95)70135-4DOI Listing

Publication Analysis

Top Keywords

cell cytotoxic
12
cytotoxic activity
12
immune function
8
smoking
8
smoking days
8
light-to-moderate smokers
8
smoking abstinence
8
natural killer
8
killer cell
8
responses concanavalin
8

Similar Publications

Development of a novel multi-epitope mRNA vaccine candidate to combat SFTSV pandemic.

PLoS Negl Trop Dis

January 2025

Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China.

Severe Fever with Thrombocytopenia Syndrome virus (SFTSV) is a novel identified pathogen, despite two decades of research on SFTSV, the potential widespread threats pose a significant challenge for researchers in developing new treatment and prevention methods. In this present, we have developed a multi-epitope mRNA vaccine for SFTSV and valid it with in silico methods. We screened 9 immunodominant epitopes for cytotoxic T cells (CTL), 7 for helper T cells (HTL), and 8 for Linear B-cell (LBL) based on promising candidate protein Gn, Gc, Np, and NSs.

View Article and Find Full Text PDF

Exploring Glypican-3 targeted CAR-NK treatment and potential therapy resistance in hepatocellular carcinoma.

PLoS One

January 2025

Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America.

Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer and the second leading cause of cancer-related mortality globally. Despite advancements in current HCC treatment, it remains a malignancy with poor prognosis. Therefore, developing novel treatment options for patients with HCC is urgently needed.

View Article and Find Full Text PDF

Background: Boswellic acid (BA) is a bioactive compound derived from Boswellia trees. This study aims to investigate the anti-cancer properties of BA against KB oral squamous cancer cells and elucidate the underlying mechanisms.

Methods: Escalating doses of BA were administered to KB cells, and various analyses were conducted using bioinformatic tools such as GEO, GEO2R, and STITCH database.

View Article and Find Full Text PDF

Curcumin-coated iron oxide nanoparticles for photodynamic therapy of breast cancer.

Photochem Photobiol Sci

January 2025

Nanosensors Laboratory, Research & Development Institute, University of Vale do Paraíba, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, São Paulo, Brazil.

Breast cancer is the deadliest cancer among women and its treatment using traditional methods leads the patient to experience adverse effects. However, photodynamic therapy (PDT) is a non-invasive therapy modality that works through a photosensitizing agent, which treating activated by a suitable light source, releases reactive oxygen species capable of treating cancer. Furthermore, recent research indicates that combining PDT and nanoparticles can enhance therapeutic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!