To delineate the implication of c-fos protooncogenic in the osteogenie process, we have investigated the temporal pattern of c-fos mRNA expression in fetal and neonatal rat bone during intramembranous and endochondral bone formation. Northern blot analysis of mRNA extracted from calvaria and femur showed that expression of c-fos, Histone H4, and osteocalcin mRNAs followed a temporal sequence during bone development. The levels of histone H4 mRNA, a marker of cell proliferation, were high at early stages of fetal development of calvaria and femur, and decreased until birth. In both the postnatal calvaria and femur, c-fos mRNA levels increased transiently at birth and preceded a rise in osteocalcin transcripts, a marker of the mature osteoblast phenotype. The immunohistochemical analysis showed that c-Fos protein was expressed in osteoprogenitor cells in the perichondrium and periosteum, and not in mature osteoblasts which expressed markers of differentiated osteoblasts such as type-I collagen, bone sialoprotein, and osteocalcin. Thus, the transient c-fos proto-oncogene expression during the postnatal life that precedes the osteocalcin expression may be involved in the transition from the precursor state to mature osteoblasts. These results suggest that c-fos proto-oncogene may play an important role in osteogenesis during rat postnatal life.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.240570108 | DOI Listing |
Cells
January 2025
Research Center of Neurology, 125367 Moscow, Russia.
Brain plasticity is at the basis of many cognitive functions, including learning and memory. It includes several mechanisms of synaptic and extrasynaptic changes, neurogenesis, and the formation and elimination of synapses. The plasticity of synaptic transmission involves the expression of immediate early genes (IEGs) that regulate neuronal activity, thereby supporting learning and memory.
View Article and Find Full Text PDFFront Immunol
January 2025
Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
Introduction: Synbiotics have revealed the possibility of improving constipation through gut microbiota. The synergistic efficacy of subsp. lactis BL-99 (BL-99) and fructooligosaccharide (FOS) on constipation have not been investigated.
View Article and Find Full Text PDFHemasphere
January 2025
Université Paris Cité, Institut Cochin, INSERM U1016, CNRS UMR8104 Assistance Publique-Hôpitaux de Paris.Centre, Laboratory of Hematology, Hôpital Cochin Paris France.
Lower risk (LR) myelodysplastic syndromes (MDS) are heterogeneous hematopoietic stem and progenitor disorders caused by the accumulation of somatic mutations in various genes including epigenetic regulators that may produce convergent DNA methylation patterns driving specific gene expression profiles. The integration of genomic, epigenomic, and transcriptomic profiling has the potential to spotlight distinct LR-MDS categories on the basis of pathophysiological mechanisms. We performed a comprehensive study of somatic mutations and DNA methylation in a large and clinically well-annotated cohort of treatment-naive patients with LR-MDS at diagnosis from the EUMDS registry (ClinicalTrials.
View Article and Find Full Text PDFBiochem Genet
January 2025
Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.
View Article and Find Full Text PDFSubcell Biochem
January 2025
Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.
In animals, memory formation and recall are essential for their survival and for adaptations to a complex and often dynamically changing environment. During memory formation, experiences prompt the activation of a selected and sparse population of cells (engram cells) that undergo persistent physical and/or chemical changes allowing long-term memory formation, which can last for decades. Over the past few decades, important progress has been made on elucidating signaling mechanisms by which synaptic transmission leads to the induction of activity-dependent gene regulation programs during the different phases of learning (acquisition, consolidation, and recall).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!