Mammalian cell nuclei contain three biochemically distinct DNA ligases. In the present study we have found high levels of DNA ligase I and DNA ligase III activity in bovine testes and have purified DNA ligase III to near homogeneity. The high level of DNA ligase III suggests a role for this enzyme in meiotic recombination. In assays measuring the fidelity of DNA joining, we detected no significant differences between DNA ligases II and III, whereas DNA ligase I was clearly a more faithful enzyme and was particularly sensitive to 3' mismatches. Amino acid sequences of peptides derived from DNA ligase III demonstrated that this enzyme, like DNA ligase II, is highly homologous with vaccinia DNA ligase. The absence of unambiguous differences between homologous peptides from DNA ligases II and III (10 pairs of peptides, 136 identical amino acids) indicates that these enzymes are either derived from a common precursor polypeptide or are encoded from the same gene by alternative splicing. Based on similarities in amino acid sequence and biochemical properties, we suggest that DNA ligases II and III, Drosophila DNA ligase II, and the DNA ligases encoded by the pox viruses constitute a distinct family of DNA ligases that perform specific roles in DNA repair and genetic recombination.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.270.16.9683DOI Listing

Publication Analysis

Top Keywords

dna ligase
48
dna ligases
24
dna
20
ligase iii
20
ligase
12
ligases iii
12
iii
8
bovine testes
8
vaccinia dna
8
ligase dna
8

Similar Publications

The natural product micheliolide promotes the nuclear translocation of GAPDH via binding to Cys247 and induces glioblastoma cell death in combination with temozolomide.

Biochem Pharmacol

January 2025

College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China. Electronic address:

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is significantly upregulated in glioblastoma (GBM) and plays a crucial role in cell apoptosis and drug resistance. Micheliolide (MCL) is a natural product with a variety of antitumour activities, and the fumarate salt form of dimethylamino MCL (DMAMCL; commercial name ACT001) has been tested in clinical trials for recurrent GBM; this compound suppresses the proliferation of GBM cells by rewiring aerobic glycolysis. Herein, we demonstrated that MCL directly targets GAPDH through covalent binding to the cysteine 247 (Cys247) residue.

View Article and Find Full Text PDF

Emerging Roles of TRIM56 in Antiviral Innate Immunity.

Viruses

January 2025

Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA.

The tripartite-motif protein 56 (TRIM56) is a RING-type E3 ubiquitin ligase whose functions were recently beginning to be unveiled. While the physiological role(s) of TRIM56 remains unclear, emerging evidence suggests this protein participates in host innate defense mechanisms that guard against viral infections. Interestingly, TRIM56 has been shown to pose a barrier to viruses of distinct families by utilizing its different domains.

View Article and Find Full Text PDF

Replication forks encounter various impediments, which induce fork stalling and threaten genome stability, yet the precise dynamics of fork stalling and restart at the single-cell level remain elusive. Herein, we devise a live-cell microscopy-based approach to follow hydroxyurea-induced fork stalling and subsequent restart at 30 s resolution. We measure two distinct processes during fork stalling.

View Article and Find Full Text PDF

: Hypertension (HTN) constitutes a significant global health burden, yet the specific genetic variant responsible for blood pressure regulation remains elusive. This study investigates the genetic basis of hypertension in the Jordanian population, focusing on gene variants related to ion channels and transporters, including , , , , , , , , and . : This research involved 200 hypertensive patients and 224 healthy controls.

View Article and Find Full Text PDF

RAD18 is a conserved eukaryotic E3 ubiquitin ligase that promotes genome stability through multiple pathways. One of these is gap-filling DNA synthesis at active replication forks and in post-replicative DNA. RAD18 also regulates homologous recombination (HR) repair of DNA breaks; however, the current literature describing the contribution of RAD18 to HR in mammalian systems has not reached a consensus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!