Chinese hamster ovary cells expressing the bovine cardiac Na/Ca exchanger were treated with ouabain to increase [Na+]i and stimulate Ca2+ influx by Na/Ca exchange. Depletion of cellular ATP inhibited 45Ca uptake by 40% or more and reduced the half-maximal Na+ concentration for inhibition of 45Ca uptake from 90 to 55 mM. ATP depletion also reduced the rate of rise in [Ca2+]i when [Na+]o was reduced and inhibited the decline in [Ca2+]i when high [Na+]o was restored. The effects of ATP depletion were either absent or reduced in cells expressing a mutant exchanger missing most of the cytosolic hydrophilic domain. We were unable to detect a phosphorylated form of the exchanger in immunoprecipitates from 32P-labeled cells. ATP depletion caused a breakdown in the actin cytoskeleton of the cells. Treatment of the cells with cytochalasin D mimicked the effects of ATP depletion on the [Na+] inhibition profile for 45Ca uptake. Thus, ATP depletion inhibits both the Ca2+ influx and Ca2+ efflux modes of Na/Ca exchange, and may alter the competitive interactions of extracellular Na+ and Ca2+ with the transporter. The latter effect appears to be related to changes in the actin cytoskeleton.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.270.16.9137 | DOI Listing |
Adv Sci (Weinh)
January 2025
School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
Despite substantial advances in the antitumor effects of annonaceous acetogenins (ACGs), the absence of a defined biological action mechanism remains a major barrier to their clinical application. Here, it is found that squamocin effectively depletes both EZH2 and MYC in multiple cancer cell lines, including head and neck squamous cell carcinoma, and gastric and colorectal cancer, demonstrating potent efficacy in suppressing these in vivo tumor models. Through the combination of surface plasmon resonance (SPR), differential scanning fluorimetry (DSF), and cellular thermal shift assay (CETSA), heat shock protein 90α (HSP90α) is identified as the direct binding target of squamocin.
View Article and Find Full Text PDFFEBS Open Bio
January 2025
Department of Medical Technology, Faculty of Health Sciences, Kumamoto Health Science University, Kumamoto, Japan.
FAM136A deficiency has been associated with Ménière's disease. However, the underlying mechanism of action of this protein remains unclear. We hypothesized that FAM136A functions in maintaining mitochondria, even in HepG2 cells.
View Article and Find Full Text PDFTissue Cell
January 2025
Anesthesia Surgery Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region 830000, China.
Background: Postoperative cognitive dysfunction (POCD) is a postoperative complication that can be induced by anaesthesia. PCSK9 has been shown to have a role in neuronal development and apoptosis. However, PCSK9 has not been studied in sevoflurane-induced POCD-related disorders.
View Article and Find Full Text PDFJ Microbiol Biotechnol
November 2024
Hanyang University ERICA, Ansan 15588, Republic of Korea.
Previous studies showed no improvement in bacterial biomass for Puniceispirillum marinum IMCC1322 under light regimes. Nevertheless, in nutrient-replete cultures with higher inoculating cell densities, strain IMCC1322 exhibited proteorhodopsin photoheterotrophy. Increasing both inoculum size and the amino acid pool can eliminate quorum sensing and starvation responses in strain IMCC1322.
View Article and Find Full Text PDFTissue Cell
January 2025
Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, China. Electronic address:
Background: Colorectal cancer (CRC) is one of the aggressive malignant tumors. Studies have shown that glycolysis promotes the proliferation of colorectal cancer cells and that PYCR2 is involved in cancer progression by affecting cellular glycolysis. In addition, PYCR2 is upregulated in colorectal cancer cell lines and can affect cellular autophagy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!