While tamoxifen may inhibit breast cancer proliferation, mutations in the estrogen receptor could potentially result in breast cancer cells which can circumvent the tamoxifen blockade. Previously, we identified a mutation at codon 351 in the estrogen receptor from a tamoxifen-stimulated human breast cancer. This receptor was stably transfected into the estrogen receptor-negative human breast cancer cell line MDA-MB-231 (clone 10A). Clones were compared to stably transfected cell lines containing either the wild type or codon 400 mutant estrogen receptor to study the effect of either estradiol or the tamoxifen analogue, fixed-ring 4-hydroxytamoxifen ((fr)4-OH TAM), on cell growth and reporter gene activation. (fr)4-OH TAM reduced the growth rate in cell lines containing mutant estrogen receptors, while the cell line containing the wild type estrogen receptor is minimally influenced by (fr)4-OH TAM. We then needed to show that the ligand-estrogen receptor interaction resulted in estrogen receptor activation. As a ligand-dependent transcription factor, estrogen receptor activation is measured by its ability to stimulate reporter gene (luciferase) transcription when bound to an estrogenic ligand. We found that the wild type estrogen receptor is activated by estradiol but not by the tamoxifen analogue, while the codon 351 estrogen receptor is activated by both (fr)4-OH TAM and estradiol.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0304-3835(94)03675-9DOI Listing

Publication Analysis

Top Keywords

estrogen receptor
32
breast cancer
20
fr4-oh tam
16
wild type
12
estrogen
11
receptor
10
estrogen receptors
8
cancer cells
8
codon 351
8
351 estrogen
8

Similar Publications

Somatic cells can be reprogrammed into pluripotent stem cells (iPSCs) by overexpressing defined transcription factors. Specifically, overexpression of OCT4 alone has been demonstrated to reprogram mouse fibroblasts into iPSCs. However, it remains unclear whether any other single factor can induce iPSCs formation.

View Article and Find Full Text PDF

Rapid nongenomic estrogen signaling controls alcohol drinking behavior in mice.

Nat Commun

December 2024

Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.

Ovarian-derived estrogen can signal non-canonically at membrane-associated receptors in the brain to rapidly regulate neuronal function. Early alcohol drinking confers greater risk for alcohol use disorder in women than men, and binge alcohol drinking is correlated with high estrogen levels, but a causal role for estrogen in driving alcohol drinking has not been established. We found that female mice displayed greater binge alcohol drinking and reduced avoidance when estrogen was high during the estrous cycle than when it was low.

View Article and Find Full Text PDF

Objectives: Triple negative breast cancer (TNBC) is a distinct subtype of breast cancer that has a poor prognosis due to the lack of effective therapeutic agents. Since a significant proportion of human surgical samples of TNBC expressed mRNA for the growth hormone (GH), growth hormone-releasing hormone (GHRH), and gonadotropin-releasing hormone (GnRH) receptors, and the mitogenic proliferative activity of GH, GHRH, and GnRH, have been identified as effective therapeutic targets for somatostatin and its analogs and GnRH analogs, Di Bella Method (DBM), a combination of hormonal analogs and vitamins, was introduced to target and inhibit solid tumors. The present study aimed to improve the prognosis of TNBC using DBM in women with TNBC.

View Article and Find Full Text PDF

We developed a versatile 'IHC/LCM-Seq' method for spatial transcriptomics of immunohistochemically detected neurons collected with laser-capture microdissection (LCM). IHC/LCM-Seq uses aluminon and polyvinyl sulfonic acid for inventive RNA-preserving strategies to maintain RNA integrity in free-floating sections of 4% formaldehyde-fixed brains. To validate IHC/LCM-Seq, we first immunostained and harvested striatal cholinergic interneurons with LCM.

View Article and Find Full Text PDF

Patterns of immune evasion in triple-negative breast cancer and new potential therapeutic targets: a review.

Front Immunol

December 2024

Medical Oncology Department, Hospital Arnau de Vilanova, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain.

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the absence of progesterone and estrogen receptors and low (or absent) HER2 expression. TNBC accounts for 15-20% of all breast cancers. It is associated with younger age, a higher mutational burden, and an increased risk of recurrence and mortality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!