Brain-derived neurotrophic factor (BDNF) has been shown to promote the survival of developing motor neurons in vitro and to rescue motor neurons from axotomy-induced cell death in vivo. In this study, we examined the effects of exogenous BDNF on the progression of wobbler mouse motor neuron disease (MND). After clinical diagnosis at age 3 to 4 weeks, 20 affected mice received subcutaneous injections of recombinant human BDNF (5 mg/kg, n = 10) or vehicle (n = 10), three times a week for 4 weeks. In a separate experiment done to conduct a histometric analysis of the C-5 and C-6 ventral roots and to determine the number of myelinated nerve fibers, 7 wobbler mice received identical BDNF treatment. In the 10 BDNF-treated wobbler mice, grip strength declined at a slower rate (p < 0.03) and was twice as great as that of vehicle-treated animals at the end of treatment (p < 0.01). In vivo biceps (p < 0.01) and in vitro muscle twitch tensions (p < 0.02) were also greater than those of vehicle-treated mice. The biceps muscle weight was 20% greater (p < 0.05) and the mean muscle fiber diameter was significantly larger in BDNF-treated mice (p < 0.001) because the number of small (denervated) muscle fibers was markedly reduced. The number of myelinated motor axons at the cervical ventral roots studied in the additional 7 affected mice was 25% greater with BDNF treatment (p < 0.0001). This study establishes that exogenous BDNF administration can retard motor dysfunction in a natural MND and diminish denervation muscle atrophy and motor axon loss.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.410370413DOI Listing

Publication Analysis

Top Keywords

brain-derived neurotrophic
8
neurotrophic factor
8
motor
8
motor dysfunction
8
wobbler mouse
8
mouse motor
8
motor neuron
8
neuron disease
8
motor neurons
8
exogenous bdnf
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!