Thermoregulatory vasoconstriction impairs active core cooling.

Anesthesiology

Department of Anesthesia, University of California, San Francisco, School of Medicine 94143-0648, USA.

Published: April 1995

Background: Many clinicians now consider hypothermia indicated during neurosurgery. Active cooling often will be required to reach target temperatures < 34 degrees C sufficiently rapidly and nearly always will be required if the target temperature is 32 degrees C. However, the efficacy even of active cooling might be impaired by thermoregulatory vasoconstriction, which reduces cutaneous heat loss and constrains metabolic heat to the core thermal compartment. The authors therefore tested the hypothesis that the efficacy of active cooling is reduced by thermoregulatory vasoconstriction.

Methods: Patients undergoing neurosurgical procedures with hypothermia were anesthetized with either isoflurane/nitrous oxide (n = 13) or propofol/fentanyl (n = 13) anesthesia. All were cooled using a prototype forced-air cooling device until core temperature reached 32 degrees C. Core temperature was measured in the distal esophagus. Vasoconstriction was evaluated using forearm minus fingertip skin-temperature gradients. The core temperature triggering a gradient of 0 degree C identified the vasoconstriction threshold.

Results: In 6 of the 13 patients given isoflurane, vasoconstriction (skin-temperature gradient = 0 degrees C) occurred at a core temperature of 34.4 +/- 0.9 degree C, 1.7 +/- 0.58 h after induction of anesthesia. Similarly, in 7 of the 13 patients given propofol, vasoconstriction occurred at a core temperature of 34.5 +/- 0.9 degree C, 1.6 +/- 0.6 h after induction of anesthesia. In the remaining patients, vasodilation continued even at core temperatures of 32 degrees C. Core cooling rates were comparable in each anesthetic group. However, patients in whom vasodilation was maintained cooled fastest. Patients in whom vasoconstriction occurred required nearly an hour longer to reach core temperatures of 33 degrees C and 32 degrees C than did those in whom vasodilation was maintained (P < 0.01).

Conclusions: Vasoconstriction did not produce a full core temperature "plateau," because of the extreme microenvironment provided by forced-air cooling. However, it markedly decreased the rate at which hypothermia developed. The approximately 1-h delay in reaching core temperatures of 33 degrees C and 32 degrees C could be clinically important, depending on the target temperature and the time required to reach critical portions of the operation.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00000542-199504000-00008DOI Listing

Publication Analysis

Top Keywords

core temperature
24
temperatures degrees
16
core
12
active cooling
12
core temperatures
12
degrees
9
thermoregulatory vasoconstriction
8
core cooling
8
will required
8
required reach
8

Similar Publications

Objective: This study aims to explore the association between intraoperative hypothermia and outcomes in adult patients undergoing laparoscopic surgery.

Methods: A retrospective analysis of 2048 adult laparoscopic surgery patients treated between 2020 and 2021 was conducted at Songklanagarind Hospital, Thailand. Intraoperative hypothermia, defined as a core temperature below 36°C, was recorded as either one or more than one episode.

View Article and Find Full Text PDF

Agricultural Practices and Environmental Factors Drive Microbial Communities in the Mezcal-Producing Agave angustifolia Haw.

Microb Ecol

January 2025

Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México, León, Guanajuato, México.

Mezcal, a traditional Mexican alcoholic beverage, has been a vital source of livelihood for indigenous and rural communities for centuries. However, increasing international demand is exerting pressure on natural resources and encouraging intensive agricultural practices. This study investigates the impact of management practices (wild, traditional, and conventional) and environmental factors on the microbial communities associated with Agave angustifolia, a key species in mezcal production.

View Article and Find Full Text PDF

Precise morphology control of all-organic core-shell droplets for synthesis of microencapsulated phase change materials through AC electric fields.

J Colloid Interface Sci

January 2025

National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Research Institute of Aero-Engine, Beihang University, Beijing 100191, China. Electronic address:

Hypothesis: Complex emulsions usually consist of aqueous phases, like oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w), serving foundational roles in colloid science. Oil-in-oil-oil (o/o/o) emulsions offer new avenues for non-aqueous reagents but face challenges in balancing the forces between multiple organic phases.

Experiments: In this work, we generate o/o/o emulsions by integrating an AC electric field with a double cross-junction microchannel.

View Article and Find Full Text PDF

Strong precursor softening in cubic CaSiO perovskite.

Proc Natl Acad Sci U S A

February 2025

Department of Earth Sciences, University College London, London WC1E 6BT, United Kingdom.

CaSiO[Formula: see text] perovskite (CaPv) is the last major mineral in the Earth's lower mantle whose elasticity remains largely unresolved. Here, we investigate the elasticity of CaPv using ab initio machine-learning force fields (MLFF). At room temperature, the elasticity of tetragonal CaPv determined by MLFF molecular dynamics (MD) agrees well with experimental measurements after considering temperature induced variations in the hydrostatic structure, proving the effectiveness of the method.

View Article and Find Full Text PDF

Carbon capture and storage (CCS) and CO-based geothermal energy are promising technologies for reducing CO emissions and mitigating climate change. Safe implementation of these technologies requires an understanding of how CO interacts with fluids and rocks at depth, particularly under elevated pressure and temperature. While CO-bearing aqueous solutions in geological reservoirs have been extensively studied, the chemical behavior of water-bearing supercritical CO remains largely overlooked by academics and practitioners alike.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!