Mild hyperhomocysteinemia is frequently observed in mothers who gave birth to a child with a neural tube defect (NTD). In a previous study we showed L-homocysteine was embryotoxic to gestational day 10 (GD10) rat embryos in culture, however, no NTDs were observed. We therefore investigated the effect of L-homocysteine on the development of neural plate stage (GD9.5) rat embryos. Other objectives of this study were investigation into whether the embryotoxicity of L-homocysteine could be attenuated by compounds related to its metabolism and clarification of the mechanism of L-homocysteine embryotoxicity. In GD9.5 rat embryos L-homocysteine was not toxic at 1- and 2-mM concentrations. Rather at these concentrations it promoted development of the rat embryos in serum that without supplementation caused NTDs in the embryos. L-Methionine had the same preventive effect at even lower concentrations, but folinic acid (1 mM) did not improve embryonic development. N5-Methyltetrahydrofolate (5-CH3-THF) (100 microM), L-serine (6 mM), and L-methionine (6 and 12 mM) attenuated the embryotoxicity of L-homocysteine (6 mM) in GD10 rat embryos. Vitamin B12 (10 microM) completely abolished the embryotoxicity of L-homocysteine, which was shown to be mediated by catalysis of the spontaneous oxidation of L-homocysteine to the less toxic L-homocystine. In GD11 rat embryos, both L- and D-homocysteine were readily taken up when added to the culture (3 mM) and increased embryonic S-adenosylhomocysteine (SAH) levels 14- and 3-fold, respectively. This difference was shown to be caused by the stereospecific preference of SAH hydrolase. We propose the basis for L-homocysteine embryotoxicity is an inhibition of transmethylation reactions by increased embryonic SAH levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tera.1420500506 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!