Approximately 4000 women per year in the United States require radiotherapy during pregnancy. This report presents data and techniques that allow the medical physicist to estimate the radiation dose the fetus will receive and to reduce this dose with appropriate shielding. Out-of-beam data are presented for a variety of photon beams, including cobalt-60 gamma rays and x rays from 4 to 18 MV. Designs for simple and inexpensive to more complex and expensive types of shielding equipment are described. Clinical examples show that proper shielding can reduce the radiation dose to the fetus by 50%. In addition, a review of the biological aspects of irradiation enables estimates of the risks of lethality, growth retardation, mental retardation, malformation, sterility, cancer induction, and genetic defects to the fetus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1118/1.597525 | DOI Listing |
Phys Med Biol
January 2025
Joint Department of Physics, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, London, SM2 5PT, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
The exact temporal characteristics of beam delivery affect the efficacy and outcome of ultra-high dose rate (UHDR or "FLASH") radiotherapy, mainly due to the influence of the beam pulse structure on mean dose rate. Single beams may also be delivered in separate treatment sessions to elevate mean dose rate. This paper therefore describes a model for pulse-by-pulse treatment planning and demonstrates its application by making some generic observations of the characteristics of FLASH radiotherapy with photons and protons.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Background: A cylindrical free-air chamber, the Attix FAC, is used for absolute air-kerma measurements of low-energy photon beams at the University of Wisconsin Medical Radiation Research Center. Correction factors for air-kerma measurements of specific beams were determined in the 1990s. In order to measure air-kerma rates of beams in development, new correction factors must be computed.
View Article and Find Full Text PDFLight Sci Appl
January 2025
National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, 410082, Changsha, China.
Accurately and swiftly characterizing the state of polarization (SoP) of complex structured light is crucial in the realms of classical and quantum optics. Conventional strategies for detecting SoP, which typically involves a sequence of cascaded optical elements, are bulky, complex, and run counter to miniaturization and integration. While metasurface-enabled polarimetry has emerged to overcome these limitations, its functionality predominantly remains confined to identifying SoP within the standard Poincaré sphere framework.
View Article and Find Full Text PDFRadiol Phys Technol
January 2025
Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bangalore, India.
The estimation of peripheral dose (PD) is vital in cancer patients with long life expectancy. Assessment of PD to radiosensitive organs is important to determine the possible risk of late effects. An attempt has been made to assess the peripheral dose using optically stimulated luminescence dosimeter (OSLD) with megavoltage photon beams as a function of field size, depth, energy, and distance from the field edge.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy.
The use of very high energy electron (VHEE) beams, with energies between 50 and 400 MeV, has drawn considerable interest in radiotherapy due to their deep tissue penetration, sharp beam edges, and low sensitivity to tissue density. VHEE beams can be precisely steered with magnetic components, positioning VHEE therapy as a cost-effective option between photon and proton therapies. However, the clinical implementation of VHEE therapy (VHEET) requires advances in several areas: developing compact, stable, and efficient accelerators; creating sophisticated treatment planning software; and establishing clinically validated protocols.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!