Transcriptional control of the himA and the himD/hip genes coding for the two subunits of the integration host factor (IHF) was investigated. The promoters for the two genes were identified by the use of primer extension and S1 analysis. Expression from both promoters was found to increase as the cells enter stationary phase. Mutation in rpoS, known to be induced upon entry to stationary phase, dramatically reduced the growth-phase response of the himA P4 promoter but had only a small effect on the induction of the himD/hip promoter. The increased activity of both promoters required the presence of the relA and spoT genes, suggesting that ppGpp plays a major role in the response to stationary phase. An artificial increase in ppGpp in exponentially growing cells induced a rapid increase in himA P4 and himD/hip mRNA levels. Experiments with a mutant defective in rpoS showed that the response of the himA P4 promoter to high ppGpp levels was greatly reduced while that of himD/hip was only slightly affected. Therefore, it seems that different mechanisms involving RpoS and ppGpp regulate the growth-phase response of the two promoters. We propose that the effect of ppGpp on himA P4 is mediated via RpoS whereas the himD/hip promoter is affected by ppGpp independently of RpoS. Expression of the himD/hip and himA genes was found to be subject to negative autoregulation. IHF-binding sites, implicated in autoregulation, were found to overlap both the himD/hip and himA P4 promoters. An additional IHF-binding site was found upstream of the himD/hip promoter. All three sites show low binding affinity to IHF suggesting that autoregulation can take place only after sufficiently high levels of IHF accumulate in the cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2958.1994.tb01336.x | DOI Listing |
Phys Rev Lett
December 2024
Université de Mons, Laboratoire Interfaces & Fluides Complexes, 20 Place du Parc, B-7000 Mons, Belgium.
The phase separation that occurs in two-temperature mixtures, which are driven out of equilibrium at the local scale, has been thoroughly characterized, but much less is known about the depletion interactions that drive it. Using numerical simulations in dimension 2, we show that the depletion interactions extend beyond two particle diameters in dilute systems, as expected at equilibrium, and decay algebraically with an exponent -4. Solving for the N-particle distribution function in the stationary state, perturbatively in the interaction potential, we show that algebraic correlations with an exponent -2d arise from triplets of particles at different temperatures in spatial dimension d.
View Article and Find Full Text PDFJ Sep Sci
January 2025
Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland.
Oligonucleotides (ONs) are an increasingly popular category of molecules in the pharmaceutical landscape, particularly attractive for the treatment of genetic and rare diseases. However, analyzing these molecules presents significant challenges, due to their highly hydrophilic nature, multiple negative charges, and the presence of closely related impurities resulting from the complex solid-phase synthesis process. Ion pairing reverse-phase liquid chromatography (IP-RPLC) is the preferred technique for ONs analysis but is not ideal for mass spectrometry (MS) coupling.
View Article and Find Full Text PDFBMC Chem
January 2025
Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University, Sharq El-Nile, Beni-Suef, 62511, Egypt.
The study of green analytical chemistry has garnered significant attention in the context of mitigating global environmental contamination. In this study, we present two methodologies for environmentally friendly chromatography that enable simultaneous and specific determination of Saxagliptin (SAX), metformin (MET), and a pharmacopoeial impurity of MET known as melamine (MEL). The initial method employed in this study is High-Performance Thin Layer Chromatography (HPTLC), which utilized 60 F 254 silica gel-coated Mark HPTLC plates on aluminum sheets as the stationary phase.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Institute for Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany.
Formic acid is an important source of reductant and energy for many microorganisms. Formate is also produced as a fermentation product, e.g.
View Article and Find Full Text PDFAnal Chem
January 2025
Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road, Shanghai 200237, P. R. China.
Protein methylation has attracted increasing attention due to its significant regulatory roles in various biological processes. However, the diversity of methylation forms, subtle differences between methylated and nonmodified sites, and their ultralow abundances pose substantial challenges for capturing and isolating methylated peptides from biological samples. Herein, we develop a chromatographic method that utilizes 4-sulfonylcalix[4]arene (SC4A) as a mobile phase additive and Click-Maltose as the stationary phase to separate methylated/nonmethylated peptides through the adsorption of the SC4A-(Me3) complex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!