A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The role of metabolism, cytoplasmic Ca2+, and pH-regulating exchangers in glucose-induced rise of cytoplasmic pH in normal mouse pancreatic islets. | LitMetric

AI Article Synopsis

  • The study examined how glucose affects the cytoplasmic pH (pHi) in pancreatic B-cells using loaded mouse islets.
  • In bicarbonate (HCO3-) buffer, glucose caused a significant and steady increase in pHi dependent on glucose concentration, while in HEPES buffer, higher glucose levels initially raised pHi but later led to a decrease.
  • The results indicate that glucose metabolism generally raises pHi in B-cells, but this increase is counteracted by calcium influx, with the balance being affected by different ion exchangers in various buffer conditions.

Article Abstract

Intact mouse islets were loaded with 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein to study the effects of glucose on cytoplasmic pH (pHi) in pancreatic B-cells. In HCO3- buffer, glucose produced a steady-state increase in pHi that required metabolism of the sugar and was concentration-dependent between 0 and 10 mM (Km approximately 5 mM) before plateauing at a maximum value of approximately 0.2 pH units. In HEPES buffer, glucose concentrations above 7 mM caused an initial rise followed by a secondary decrease and an eventual return to about initial values. Inhibition of Ca2+ influx had little effect on the pHi changes produced by glucose in HCO3- medium, but unmasked an alkalinizing effect in HEPES buffer. Raising cytoplasmic Ca2+ by 30 mM potassium caused a larger acidification in HEPES than in HCO3- buffer, but a subsequent rise in glucose now increased pHi in both types of buffer. In the presence of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS; inhibitor of HCO3-/Cl- exchange), the effect of glucose on pHi in HCO3- buffer became similar to that in HEPES buffer. After inhibition of the Na+/H+ exchanger by dimethylamiloride, glucose produced a marked and sustained fall in pHi in HEPES buffer. A similar fall was seen in HCO3- buffer only when DIDS and dimethylamiloride were present together. However, if Ca2+ influx was prevented when both exchangers were blocked, glucose increased pHi. In conclusion, the metabolism of glucose tends to increase pHi in B-cells, whereas the concomitant rise in [Ca2+]i exerts an acidifying action. In HEPES buffer, this acidifying effect of Ca2+ is offset by the operation of the Na+/H+ exchanger. In physiological HCO3- buffer, the activity of the HCO3-/Cl- exchanger overcompensates and leads to an increase in pHi.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.270.14.7915DOI Listing

Publication Analysis

Top Keywords

hco3- buffer
20
hepes buffer
20
increase phi
12
buffer
11
glucose
9
phi
9
cytoplasmic ca2+
8
buffer glucose
8
glucose produced
8
ca2+ influx
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!