Composition of polymer membranes for therapies of end-stage renal disease.

Contrib Nephrol

Althin Medical, Inc., Miami Lakes, Fla.

Published: May 1995

Download full-text PDF

Source
http://dx.doi.org/10.1159/000424211DOI Listing

Publication Analysis

Top Keywords

composition polymer
4
polymer membranes
4
membranes therapies
4
therapies end-stage
4
end-stage renal
4
renal disease
4
composition
1
membranes
1
therapies
1
end-stage
1

Similar Publications

Enhanced Hot/Free Electron Effect for Photocatalytic Hydrogen Evolution Based on 3D/2D Graphene/MXene Composite.

Small

March 2025

The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.

Photocatalytic hydrogen production through water splitting represents a promising strategy to store solar energy as chemical energy. Current photocatalysts primarily focus on traditional semiconductor materials, such as metal oxides, sulfides, nitrides, g-CN, etc. However, these materials often suffer from large bandgap and fast charge recombination, which limit sunlight utilization and result in unsatisfactory photon conversion efficiency.

View Article and Find Full Text PDF

In this work, a promising material of polyaniline (PANI) and two-dimensional molybdenum diselenides consisting of a PANI@2D-MoSe binary composite was prepared by an electrochemical polymerization ethod. The as-prepared PANI@2D-MoSe, the polymer covered in the sheet-like structure of 2D-MoSe surface morphologies, was observed through FE-SEM and HR-TEM studies. The SAED pattern of PANI@2D-MoSe was observed to be in an octahedral phase.

View Article and Find Full Text PDF

Research Advances in Ion Exchange of Halide Perovskites.

Nanomaterials (Basel)

February 2025

Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China.

In recent years, halide perovskite materials have been extensively studied by researchers due to their excellent optoelectronic characteristics. Unlike traditional semiconductors, halide perovskites possess unique ionic crystal structures, which makes it easier to perform facile composition engineering to tailor their physical and chemical properties. Ion exchange is a popular post-treatment strategy to achieve composition engineering in perovskites, and various ion exchange processes have been used to modify the structural and functional features of prefabricated perovskites to meet the requirements of desired applications.

View Article and Find Full Text PDF

Two-Dimensional Nanomaterials for Polymer-Based Packaging Applications: A Colloidal Perspective.

Nanomaterials (Basel)

February 2025

Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Material Science and Engineering, Peking University, Beijing 100871, China.

The integration of two-dimensional (2D) nanomaterials into polymer-based packaging presents a promising avenue for sustainable, high-performance materials. This perspective explores the roles of colloidal interactions in the assembly of 2D materials into thin films for packaging applications. We begin by analyzing the types of colloidal forces present in 2D nanomaterials and their impact on dispersion and stability.

View Article and Find Full Text PDF

The actin cytoskeleton plays an important role in morphological changes of ameloblasts during the formation of enamel, which is indispensable for teeth to withstand wear, fracture and caries progression. This study reveals that the actin nucleator Cobl is expressed in ameloblasts of mandibular molars during amelogenesis. Cobl expression was particularly pronounced during the secretory phase of the enamel-forming cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!