The thyrotropin receptor.

Vitam Horm

Laboratory of Biochemistry and Metabolism, National Institute of Diabetes, Digestive, and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892.

Published: May 1995

This chapter has outlined the complex process required for thyroid growth and function. Both events are regulated by TSHR via a multiplicity of signals, with the aid of and requirement for a multiplicity of hormones that regulate the TSHR via receptor cross-talk: insulin, IGF-I, adrenergic receptors, and purinergic receptors. Cross-talk appears to regulate G-protein interactions or activities induced by TSH as well as TSHR gene expression. The TSHR structure and its mechanism of signal transduction is being rapidly unraveled in several laboratories, since the recent cloning of the receptor. In addition, the epitopes for autoantibodies against the receptor that can subvert the normal regulated synthesis and secretion of thyroid hormones, causing hyper- or hypofunction, have been defined. Studies of regulation of the TSHR minimal promotor have uncovered a better understanding of the mechanisms by which TSH regulates both growth and function of the thyroid cell. A key novel component of this phenomenon involves TSH AMP positive and negative regulation of the TSHR. Negative transcriptional regulation is a common feature of MHC class I genes in the thyroid. Subversion of negative regulation or too little negative regulation is suggested to result in autoimmune disease. Methimazole and iodide at autoregulatory levels may be important in reversing this process and returning thyroid function to normal. Their action appears to involve factors that react with the IREs on both the TSHR and the TG promoter. Too much negative regulation, as in the case of ras transformation, results in abnormal growth without function. TTF-1 is implicated as a critical autoregulatory component in both positive and negative regulation of the TSHR and appears to be the link between TSH, the TSHR, TSHR-mediated signals, TG and TPO biosynthesis, and thyroid hormone formation. Differentially regulated expression of the TSHR and TG by cAMP and insulin depend on differences in the specificity of the TTF-1 site, that is, the lack of Pax-8 interactions with the TSHR, and the IRE sites. Single-strand binding proteins will become important in determining how TSHR transcription is controlled mechanistically.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0083-6729(08)60658-5DOI Listing

Publication Analysis

Top Keywords

negative regulation
20
growth function
12
tshr
12
regulation tshr
12
expression tshr
8
positive negative
8
regulation
7
thyroid
6
negative
6
thyrotropin receptor
4

Similar Publications

Cytotoxic DNAs, methylation, histones and histones binding proteins are speculated to induce DNA sensors. Under stressed condition, the antigenic patterns, PAMPs and DAMPs, trigger the hyperactive innate response through DNA, DNA-RNA hybrids, oligonucleotides, histones and mtDNA to initiate cGAMP-STING-IFN I cascade. HSV -1&2, HIV, Varicella- Zoster virus, Polyomavirus, Cytomegalovirus, and KSHV negatively regulate the STING-MAVS-TBK-1/1KKE pathway.

View Article and Find Full Text PDF

Introduction: Positionality statements accompanying peer-reviewed publications are increasingly being implemented in academic journals across many disciplines, including psychology. These statements serve as transparent, public acknowledgments of the authors' identities, which can offer valuable insight into the authors' work in the context of their lived experiences and potential biases. However, journal editors and associated staff risk harm by uniformly adopting a policy on positionality statements without consideration of the unintended consequences of implementing such practices.

View Article and Find Full Text PDF

CircZmMED16 delays plant flowering by negatively regulating starch content through its binding to ZmAPS1.

J Integr Plant Biol

January 2025

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.

Circular RNAs (circRNAs), a type of head-to-tail closed RNA molecules, have been implicated in various aspects of plant development and stress responses through transcriptome sequencing; however, the precise functional roles of circRNAs in plants remain poorly understood. In this study, we identified a highly expressed circular RNA, circZmMED16, derived from exon 8 of the mediator complex subunit 16 (ZmMED16) across different maize (Zea mays L.) inbred lines using circRNA-seq analysis.

View Article and Find Full Text PDF

Engineering a Novel NIR RNA-Specific Probe for Tracking Stress Granule Dynamics in Living Cells.

Anal Chem

January 2025

Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.

Real-time monitoring of the dynamics of cytosolic RNA-protein condensates, termed stress granules (SGs), is vital for understanding their biological roles in stress response and related disease treatment but is challenging due to the lack of simple and accurate methods. Compared with protein visualization that requires complex transfection procedures, direct RNA labeling offers an ideal alternative for tracking SG dynamics in living cells. Here, we propose a novel molecular design strategy to construct a near-infrared RNA-specific fluorescent probe () for tracking SGs in living cells.

View Article and Find Full Text PDF

The molecular mechanism of transforming red light signal to (E)-β-caryophyllene biosynthesis in Arabidopsis.

Physiol Plant

January 2025

Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, China.

It is known that red light irradiation enhances the biosynthesis of (E)-β-caryophyllene in plants. However, the underlying mechanism connecting red light to (E)-β-caryophyllene biosynthesis remains elusive. This study reveals a molecular cascade involving the phyB-PIF4-MYC2 module, which regulates (E)-β-caryophyllene biosynthesis in response to the red light signal in Arabidopsis thaliana.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!