We report the cases of a mother and son with Leber's hereditary optic neuropathy (LHON), where a point mutation of mitochondria DNA from guanine to adenine on nucleotide position 11778 was verified. Both also had cerebellar ataxia and dysarthria and in both cases cerebellar atrophies were detected by computed tomography or magnetic resonance imaging. It was not possible to elucidate the relationship between LHON and the cerebellar atrophy, but it should be kept in mind that various neurological complications may occur in LHON.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00887819DOI Listing

Publication Analysis

Top Keywords

cerebellar ataxia
8
leber's hereditary
8
hereditary optic
8
optic neuropathy
8
cerebellar
4
ataxia patients
4
patients leber's
4
neuropathy report
4
report cases
4
cases mother
4

Similar Publications

Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease caused by mutations in the SACS gene. The first two mutations were identified in French Canadian populations 20 years ago. The disease is now known as one of the most frequent recessive ataxias worldwide.

View Article and Find Full Text PDF

Cerebellar Ataxia, Neuropathy, and Vestibular Areflexia as a Presentation of a Novel DNMT1 Mutation.

Cerebellum

January 2025

Department of Neurology, Division of Neuro-Visual & Vestibular Disorders, The Johns Hopkins University School of Medicine, Johns Hopkins Hospital, 600 N. Wolfe Street, Baltimore, MD, USA.

A 50-year-old woman with a 20-year history of gait instability presented with new-onset vertigo and oscillopsia. Examination revealed bilateral vestibular loss, cerebellar ataxia, sensory neuropathy, a "yes-yes" head tremor, nystagmus and a family history of a similar syndrome. Genetic testing for cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (RFC1) was negative, but whole exome sequencing identified a novel mutation in the DNA methyltransferase 1 (DNMT1) gene, broadening the differential diagnosis for this phenotype.

View Article and Find Full Text PDF

EEFSEC deficiency: A selenopathy with early-onset neurodegeneration.

Am J Hum Genet

January 2025

Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; Center for Rare Disease, University of Tübingen, 72076 Tübingen, Germany; Genomics for Health in Africa (GHA), Africa-Europe Cluster of Research Excellence (CoRE).

Inborn errors of selenoprotein expression arise from deleterious variants in genes encoding selenoproteins or selenoprotein biosynthetic factors, some of which are associated with neurodegenerative disorders. This study shows that bi-allelic selenocysteine tRNA-specific eukaryotic elongation factor (EEFSEC) variants cause selenoprotein deficiency, leading to progressive neurodegeneration. EEFSEC deficiency, an autosomal recessive disorder, manifests with global developmental delay, progressive spasticity, ataxia, and seizures.

View Article and Find Full Text PDF

Late onset cerebellar ataxia syndrome after non-paraneoplastic Lambert-Eaton myasthenic syndrome: a case study.

BMC Neurol

January 2025

Neuromuscular Neurology, Advocate Health, 1850 Dempster Street, Park Ridge, IL, 60068, USA.

This is an unusual case of voltage gated calcium channel (VGCC) antibodies leading to two distinct and chronologically separated neurologic syndromes without the presence of an underlying neoplasm. Lambert Eaton Myasthenic Syndrome (LEMS) presented five years prior to cerebellar ataxia. Both LEMS and cerebellar ataxia were responsive to treatment, but not the same therapy.

View Article and Find Full Text PDF

White matter functional and structural alterations of spinocerebellar ataxia type 3: A longitudinal MRI study.

Neuroscience

December 2024

Department of Radiology, Xiangya Hospital of Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital of Central South University, Changsha, 410008, China; Hunan Engineering Research Center for Intelligent Medical Imaging, Changsha, 410078, Hunan, China; FuRong Laboratory, Changsha, 410078, Hunan, China. Electronic address:

Widespread white matter (WM) microstructural abnormalities have been reported in patients with spinocerebellar ataxia type 3 (SCA3) using diffusion tensor imaging (DTI), whereas the ability of DTI to detect WM degeneration over short-term period remains insufficiently explored. Additionally, WM dysfunction remains entirely unknown in this disease. This study aims to investigate WM structural and functional alterations in SCA3, and provide promising progression biomarkers for short-term clinical trials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!