Successful expression of the TCR beta-chain gene is a multistep process that involves: 1) initial transcription of multiple, unrearranged gene segments, 2) rearrangement of V, D, and J gene segments to form a complete beta-chain gene, and 3) transcription of the fully rearranged beta gene. All of these events have been shown to occur in the thymus, where the majority of T cell development takes place; however, the extent to which any of these events may occur prethymically has not been established. To examine prethymic TCR-beta gene expression, RNA was isolated from a precursor T cell-enriched population (Thy 1low CD3-) of C58/J mouse bone marrow, and analyzed by reverse transcriptase-PCR. A transcript containing TCR-beta constant (C) region sequences but not variable (V) region sequences was amplified, suggesting that an unrearranged TCR-beta gene locus is transcriptionally active in this bone marrow population. The same product was detected in Thy 1+ CD3- bone marrow cells from nude mice, indicating that the thymic microenvironment is not necessary for initiation of TCR-beta gene transcription. This C beta transcript is not confined to pre-B cells, as it was identified in RNA isolated from Thy 1low CD3- B220- bone marrow cells. Germline V beta transcripts were also detected in RNA from this bone marrow population. Furthermore, Sca-1+ Lin- and Sca-1+ Lin+ bone marrow populations from both C58/J mice and nude mice also expressed the C beta transcript. DNA-PCR analyses with D beta-J beta primer sets revealed that partial rearrangement of the beta locus had occurred in all bone marrow populations analyzed. These data suggest that both transcription and partial rearrangement of the TCR-beta locus can initiate in bone marrow cells of adult mice, before exposure of these cells to the thymus.
Download full-text PDF |
Source |
---|
Acta Biomater
January 2025
Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland. Electronic address:
Functional cartilaginous tissues can potentially be engineered by bringing together numerous microtissues (µTs) and allowing them to fuse and re-organize into larger, structurally organized grafts. The maturation level of individual microtissues is known to influence their capacity to fuse, however its impact on the long-term development of the resulting tissue remains unclear. The first objective of this study was to investigate the influence of the maturation state of human bone-marrow mesenchymal stem/stromal cells (hBM-MSCSs) derived microtissues on their fusion capacity and the phenotype of the final engineered tissue.
View Article and Find Full Text PDFStem Cells Dev
January 2025
Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
Autologous hematopoietic stem cell transplantation is used to restore bone marrow function after high-dose chemotherapy. For apheresis, granulocyte colony-stimulating factor (G-CSF) is standard of care, but obtaining sufficient stem cells can be challenging. Other mobilization agents include plerixafor and PEGylated G-CSF (PEG-G-CSF).
View Article and Find Full Text PDFBiomarkers
January 2025
Pediatric Intensive Care Unit, Hospital Sant Joan de Déu-University of Barcelona, Barcelona, Spain.
PurposeChimeric antigen receptor (CAR) T-cell CD19 therapy has changed the treatment paradigm for patients with relapsed/refractory B-cell acute lymphoblastic leukemia. It is frequently associated with potentially severe toxicities: cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), and admission to PICU is often required. Some biomarkers seem to correlate with CRS severity.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal Street, Downtown, New Orleans, LA 70112, USA.
Bone is a multifaceted tissue requiring orchestrated interplays of diverse cells within specialized microenvironments. Although significant progress has been made in understanding cellular and molecular mechanisms of component cells of bone, revealing their spatial organization and interactions in native bone tissue microenvironment is crucial for advancing precision medicine, as they govern fundamental signaling pathways and functional dependencies among various bone cells. In this study, we present the first integrative high-resolution map of human bone and bone marrow, using spatial and single-cell transcriptomics profiling from femoral tissue.
View Article and Find Full Text PDFJ Clin Lab Anal
January 2025
Hematology Division, Pisa University Hospital, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
Background: The management of multiple myeloma is challenging because the disease is incurable and unexpected relapses can threaten a patient's survival. Several assessment systems are currently available, but they often require invasive or costly procedures (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!