An emerging body of data indicates that the protein mediator described originally as macrophage migration inhibitory factor (MIF) exerts a central and wide ranging role in host inflammatory responses. MIF is a major constituent of corticotrophic cells within the anterior pituitary gland and is secreted into the circulation in a hormone-like fashion. MIF also exists performed in monocytes/macrophages and is a pivotal mediator in the host response to endotoxic shock. To gain further insight into the biologic expression of this protein that encompasses components of both the immune and the endocrine systems, we have cloned the mouse MIF gene and identified potential regulatory sequences present within the 5'-proximal promoter region. The gene for mouse MIF is located on chromosome 10, spans approximately 1 kb, and shares a high degree of structural homology with its human counterpart. Of note, the consensus enhancer/promoter motifs identified include both inflammatory/growth factor-related elements and sites associated with the genes for certain peptide hormones. We also report the structures of two MIF pseudogenes that account for early observations suggesting that mouse MIF is encoded by a highly homologous multigene family.
Download full-text PDF |
Source |
---|
Cells
January 2025
Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
Macrophages play important roles in metabolic dysfunction-associated steatohepatitis (MASH), an advanced and inflammatory stage of metabolic dysfunction-associated steatotic liver disease (MASLD). In humans and mice, the cellular heterogeneity and diverse function of hepatic macrophages in MASH have been investigated by single cell RNA sequencing (scRNA-seq). However, little is known about their roles in rats.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
Neuroinflammation and mitochondrial dysfunction are early events in Alzheimer's disease (AD) and contribute to neurodegeneration and cognitive impairment. Evidence suggests that the inflammatory axis mediated by macrophage migration inhibitory factor (MIF) binding to its receptor, CD74, plays an important role in many central nervous system (CNS) disorders such as AD. Our group has developed DRhQ, a novel CD74 binding construct which competitively inhibits MIF binding, blocks macrophage activation and migration into the CNS, enhances anti-inflammatory microglia cell numbers and reduces pro-inflammatory gene expression.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Stem Cell and Regenerative Medicine, Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
Background: It is worthwhile to establish a prognostic prediction model based on microenvironment cells (MCs) infiltration and explore new treatment strategies for triple-negative breast cancer (TNBC).
Methods: The xCell algorithm was used to quantify the cellular components of the TNBC microenvironment based on bulk RNA sequencing (bulk RNA-seq) data. The MCs index (MCI) was constructed using the least absolute shrinkage and selection operator Cox (LASSO-Cox) regression analysis.
Cell Commun Signal
January 2025
Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.
Background: Ewing's sarcoma (EwS), a common pediatric bone cancer, is associated with poor survival due to a lack of therapeutic targets for immunotherapy or targeted therapy. Therefore, more effective treatment options are urgently needed.
Methods: Since novel immunotherapies may address this need, we performed an integrative analysis involving single-cell RNA sequencing, cell function experiments, and humanized models to dissect the immunoregulatory interactions in EwS and identify strategies for optimizing immunotherapeutic efficacy.
Int J Mol Sci
December 2024
Life Science Division, Yamaguchi University Advanced Technology Institute, Ube 755-8505, Japan.
The combination of alcohol and a low-carbohydrate, high-protein, high-fat atherogenic diet (AD) increases the risk of lethal arrhythmias in apolipoprotein E/low-density lipoprotein receptor double-knockout (AL) mice with metabolic dysfunction-associated steatotic liver disease (MASLD). This study investigates whether left ventricular (LV) myocardial interstitial fibrosis (MIF), formed during the progression of metabolic dysfunction-associated steatohepatitis (MASH), contributes to this increased risk. Male AL mice were fed an AD with or without ethanol for 16 weeks, while age-matched AL and wild-type mice served as controls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!